auto commit

This commit is contained in:
CyC2018 2018-03-25 16:11:54 +08:00
parent 82be64f16a
commit 4ad6eee546
7 changed files with 27 additions and 88 deletions

View File

@ -79,7 +79,7 @@ Git 把每次提交都连成一条时间线。分支使用指针来实现,例
# 冲突
当两个分支都对同一个文件进行了修改,在分支合并时就会产生冲突。
当两个分支都对同一个文件的同一行进行了修改,在分支合并时就会产生冲突。
<div align="center"> <img src="../pics//58e57a21-6b6b-40b6-af85-956dd4e0f55a.jpg"/> </div><br>

View File

@ -11,11 +11,10 @@
* [使用场景](#使用场景)
* [实现方式](#实现方式)
* [五、分布式 Session](#五分布式-session)
* [1. 粘性 Session](#1-粘性-session)
* [2. 服务器 Session 复制](#2-服务器-session-复制)
* [3. Session 共享机制](#3-session-共享机制)
* [4. Session 持久化到数据库](#4-session-持久化到数据库)
* [5. Terracotta 实现 Session 复制](#5-terracotta-实现-session-复制)
* [1. Sticky Sessions](#1-sticky-sessions)
* [2. Session Replication](#2-session-replication)
* [3. Persistent DataStore](#3-persistent-datastore)
* [4. In-Memory DataStore](#4-in-memory-datastore)
* [六、分库与分表带来的分布式困境与应对之策](#六分库与分表带来的分布式困境与应对之策)
* [事务问题](#事务问题)
* [查询问题](#查询问题)
@ -249,99 +248,37 @@ Zookeeper 提供了一种树形结构级的命名空间,/app1/p_1 节点表示
# 五、分布式 Session
如果不做任何处理的话,用户将出现频繁登录的现象,比如集群中存在 A、B 两台服务器用户在第一次访问网站时Nginx 通过其负载均衡机制将用户请求转发到 A 服务器,这时 A 服务器就会给用户创建一个 Session。当用户第二次发送请求时Nginx 将其负载均衡到 B 服务器,而这时候 B 服务器并不存在 Session所以就会将用户踢到登录页面。这将大大降低用户体验度导致用户的流失这种情况是项目绝不应该出现的
在分布式场景下,一个用户的 Session 如果只存储在一个服务器上,那么当负载均衡器把用户的下一个请求转发到另一个服务器上,该服务器没有保存用户的 Session就可能导致用户需要重新进行登录等操作
## 1. 粘性 Session
<div align="center"> <img src="../pics//cookiedata.png"/> </div><br>
### 原理
## 1. Sticky Sessions
粘性 Session 是指将用户锁定到某一个服务器上,比如上面说的例子,用户第一次请求时,负载均衡器将用户的请求转发到了 A 服务器上,如果负载均衡器设置了粘性 Session 的话,那么用户以后的每次请求都会转发到 A 服务器上,相当于把用户和 A 服务器粘到了一块,这就是粘性 Session 机制
需要配置负载均衡器,使得一个用户的所有请求都路由到一个服务器节点上,这样就可以把用户的 Session 存放在该服务器节点中
### 优点
缺点:当服务器节点宕机时,将丢失该服务器节点上的所有 Session。
简单,不需要对 Session 做任何处理。
<div align="center"> <img src="../pics//MultiNode-StickySessions.jpg"/> </div><br>
### 缺点
## 2. Session Replication
缺乏容错性,如果当前访问的服务器发生故障,用户被转移到第二个服务器上时,他的 Session 信息都将失效
在服务器节点之间进行 Session 同步操作,这样的话用户可以访问任何一个服务器节点
### 适用场景
缺点:需要更好的服务器硬件条件;需要对服务器进行配置。
- 发生故障对客户产生的影响较小;
- 服务器发生故障是低概率事件。
<div align="center"> <img src="../pics//MultiNode-SessionReplication.jpg"/> </div><br>
## 2. 服务器 Session 复制
## 3. Persistent DataStore
### 原理
将 Session 信息持久化到一个数据库中。
任何一个服务器上的 Session 发生改变,该节点会把这个 Session 的所有内容序列化,然后广播给所有其它节点,不管其他服务器需不需要 Session以此来保证 Session 同步
缺点:有可能需要去实现存取 Session 的代码
### 优点
<div align="center"> <img src="../pics//MultiNode-SpringSession.jpg"/> </div><br>
可容错,各个服务器间 Session 能够实时响应。
## 4. In-Memory DataStore
### 缺点
会对网络负荷造成一定压力,如果 Session 量大的话可能会造成网络堵塞,拖慢服务器性能。
### 实现方式
1. 设置 Tomcat 的 server.xml 开启 tomcat 集群功能。
2. 在应用里增加信息:通知应用当前处于集群环境中,支持分布式,即在 web.xml 中添加&lt;distributable/> 选项。
## 3. Session 共享机制
使用分布式缓存方案比如 Memcached、Redis但是要求 Memcached 或 Redis 必须是集群。
使用 Session 共享也分两种机制,两种情况如下:
### 3.1 粘性 Session 共享机制
和粘性 Session 一样,一个用户的 Session 会绑定到一个 Tomcat 上。Memcached 只是起到备份作用。
<div align="center"> <img src="../pics//93a28704-6401-4671-9758-051fadfbeb47.jpg" width="400"/> </div><br>
### 3.2 非粘性 Session 共享机制
#### 原理
Tomcat 本身不存储 Session而是存入 Memcached 中。Memcached 集群构建主从复制架构。
<div align="center"> <img src="../pics//ce0fa5d0-866b-46e6-a873-8eb1f78c2882.jpg" width="400"/> </div><br>
#### 优点
可容错Session 实时响应。
#### 实现方式
用开源的 msm 插件解决 Tomcat 之间的 Session 共享Memcached_Session_ManagerMSM
## 4. Session 持久化到数据库
### 原理
拿出一个数据库,专门用来存储 Session 信息。保证 Session 的持久化。
### 优点
服务器出现问题Session 不会丢失
### 缺点
如果网站的访问量很大,把 Session 存储到数据库中,会对数据库造成很大压力,还需要增加额外的开销维护数据库。
## 5. Terracotta 实现 Session 复制
### 原理
Terracotta 的基本原理是对于集群间共享的数据当在一个节点发生变化的时候Terracotta 只把变化的部分发送给 Terracotta 服务器,然后由服务器把它转发给真正需要这个数据的节点。它是服务器 Session 复制的优化。
<div align="center"> <img src="../pics//b6acae0d-7148-41de-adc3-ff5ff8dca3ae.jpg"/> </div><br>
### 优点
这样对网络的压力就非常小,各个节点也不必浪费 CPU 时间和内存进行大量的序列化操作。把这种集群间数据共享的机制应用在 Session 同步上,既避免了对数据库的依赖,又能达到负载均衡和灾难恢复的效果。
可以使用 Redis 和 Memcached 这种内存型数据库对 Session 进行存储,可以大大提高 Session 的读写效率。内存型数据库同样可以持久化数据到磁盘中来保证数据的安全性。
# 六、分库与分表带来的分布式困境与应对之策
@ -366,6 +303,8 @@ Terracotta 的基本原理是对于集群间共享的数据,当在一个节点
- [Comparing Load Balancing Algorithms](http://www.jscape.com/blog/load-balancing-algorithms)
- [负载均衡算法及手段](https://segmentfault.com/a/1190000004492447)
- [Redirection and Load Balancing](http://slideplayer.com/slide/6599069/#)
- [Session Management using Spring Session with JDBC DataStore](https://sivalabs.in/2018/02/session-management-using-spring-session-jdbc-datastore/)
- [Apache Wicket User Guide - Reference Documentation](# Apache Wicket User Guide - Reference Documentation)
- [集群/分布式环境下 5 种 Session 处理策略](http://blog.csdn.net/u010028869/article/details/50773174?ref=myread)
- [浅谈分布式锁](http://www.linkedkeeper.com/detail/blog.action?bid=1023)
- [深入理解分布式事务](https://juejin.im/entry/577c6f220a2b5800573492be)

View File

@ -258,9 +258,7 @@ lock-x(A)...unlock(A)...lock-s(B)...unlock(B)...lock-s(c)...unlock(C)...
# 五、多版本并发控制
Multi-Version Concurrency Control, MVCC是 MySQL 的 InnoDB 存储引擎实现隔离级别的一种具体方式,它的基本思想是通过保存每个数据行的多个版本,一个事务对数据行做修改时,其它事务可以读取之前的一个版本,并且都是读取相同的版本,从而保证多个事务对同一个数据行读取的结果是一致的。
用于实现提交读和可重复读这两种隔离级别。而对于未提交读隔离级别,它总是读取最新的数据行,无需使用 MVCC可串行化隔离级别需要对所有读取的行都加锁单纯使用 MVCC 无法实现。
Multi-Version Concurrency Control, MVCC是 MySQL 的 InnoDB 存储引擎实现隔离级别的一种具体方式,用于实现提交读和可重复读这两种隔离级别。而未提交读隔离级别总是读取最新的数据行,无需使用 MVCC可串行化隔离级别需要对所有读取的行都加锁单纯使用 MVCC 无法实现。
## 版本号
@ -280,9 +278,11 @@ InnoDB 的 MVCC 使用到的快照存储在 Undo 日志中,该日志通过回
## 实现过程
以下过程针对可重复读隔离级别。
### 1. SELECT
该操作必须保证多个事务读取到同一个数据行的快照。但是也有例外,如果有一个事务正在修改该数据行,那么它可以读取事务本身所做的修改,而不用和其它事务的读取结果一致。
该操作必须保证多个事务读取到同一个数据行的快照,这个快照是最近的一个有效快照。但是也有例外,如果有一个事务正在修改该数据行,那么它可以读取事务本身所做的修改,而不用和其它事务的读取结果一致。
当开始新一个事务时,该事务的版本号肯定会大于所有数据行快照的创建版本号,理解这一点很关键。

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

BIN
pics/cookiedata.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB