auto commit

This commit is contained in:
CyC2018 2018-05-27 14:29:16 +08:00
parent a6d6f8b29e
commit 33cfec3a64
9 changed files with 351 additions and 299 deletions

View File

@ -42,6 +42,10 @@
整理自《图解 HTTP》
> [Socket](https://github.com/CyC2018/InnterviewNotes/blob/master/notes/Socket.md)
整理自《Unix 网络编程》
## 面向对象 :couple:
@ -87,7 +91,7 @@ Leetcode 上数据库题目的解题记录。
> [Java 并发](https://github.com/CyC2018/InnterviewNotes/blob/master/notes/Java%20并发.md)
只整理了一些比较基础的概念,之后会继续添加更多内容
整理了一些并发的基本概念
> [Java 容器](https://github.com/CyC2018/InnterviewNotes/blob/master/notes/Java%20容器.md)

View File

@ -64,13 +64,6 @@
* [waitpid()](#waitpid)
* [孤儿进程](#孤儿进程)
* [僵死进程](#僵死进程)
* [十一、I/O 复用](#十一io-复用)
* [概念理解](#概念理解)
* [I/O 模型](#io-模型)
* [select poll epoll](#select-poll-epoll)
* [select 和 poll 比较](#select-和-poll-比较)
* [eopll 工作模式](#eopll-工作模式)
* [select poll epoll 应用场景](#select-poll-epoll-应用场景)
* [参考资料](#参考资料)
<!-- GFM-TOC -->
@ -1208,7 +1201,7 @@ pid_t wait(int *status)
如果成功,返回被收集的子进程的进程 ID如果调用进程没有子进程调用就会失败此时返回 - 1同时 errno 被置为 ECHILD。
参数 status 用来保存被收集进程退出时的一些状态,如果我们对这个子进程是如何死掉的毫不在意,只想把这个僵尸进程消灭掉,我们就可以设定这个参数为 NULL
参数 status 用来保存被收集进程退出时的一些状态,如果我们对这个子进程是如何死掉的毫不在意,只想把这个僵尸进程消灭掉,以设定这个参数为 NULL
```c
pid = wait(NULL);
@ -1217,12 +1210,12 @@ pid = wait(NULL);
## waitpid()
```c
pid_t waitpid(pid_t pid,int *status,int options)
pid_t waitpid(pid_t pid, int *status, int options)
```
作用和 wait() 完全相同,但是多了两个可由用户控制的参数 pid 和 options。
pid 参数指示一个子进程的 ID表示只关心这个子进程的退出 SIGCHLD 信号。如果 pid=-1 时,那么 wait() 作用相同,都是关心所有子进程退出的 SIGCHLD 信号。
pid 参数指示一个子进程的 ID表示只关心这个子进程的退出 SIGCHLD 信号。如果 pid=-1 时,那么 wait() 作用相同,都是关心所有子进程退出的 SIGCHLD 信号。
options 参数主要有 WNOHANG 和 WUNTRACED 两个选项WNOHANG 可以使 waitpid() 调用变成非阻塞的,也就是说它会立即返回,父进程可以继续执行其它任务。
@ -1242,298 +1235,10 @@ options 参数主要有 WNOHANG 和 WUNTRACED 两个选项WNOHANG 可以使 w
要消灭系统中大量的僵死进程,只需要将其父进程杀死,此时所有的僵死进程就会变成孤儿进程,从而被 init 所收养,这样 init 就会释放所有的僵死进程所占有的资源,从而结束僵死进程。
# 十一、I/O 复用
## 概念理解
I/O Multiplexing 又被称为 Event Driven I/O它可以让单个进程具有处理多个 I/O 事件的能力。
当某个 I/O 事件条件满足时,进程会收到通知。
如果一个 Web 服务器没有 I/O 复用,那么每一个 Socket 连接都需要创建一个线程去处理。如果同时连接几万个连接那么就需要创建相同数量的线程。并且相比于多进程和多线程技术I/O 复用不需要进程线程创建和切换的开销,系统开销更小。
## I/O 模型
- 阻塞Blocking
- 非阻塞Non-blocking
- 同步Synchronous
- 异步Asynchronous
阻塞非阻塞是等待 I/O 完成的方式,阻塞要求用户程序停止执行,直到 I/O 完成,而非阻塞在 I/O 完成之前还可以继续执行。
同步异步是获知 I/O 完成的方式,同步需要时刻关心 I/O 是否已经完成,异步无需主动关心,在 I/O 完成时它会收到通知。
<div align="center"> <img src="../pics//1a231f2a-5c2f-4231-8e0f-915aa5894347.jpg" width=""/> </div><br>
### 1. 同步-阻塞
这是最常见的一种模型,用户程序在使用 read() 时会执行系统调用从而陷入内核,之后就被阻塞直到系统调用完成。
应该注意到,在阻塞的过程中,其他程序还可以执行,因此阻塞不意味着整个操作系统都被阻塞。因为其他程序还可以执行,因此不消耗 CPU 时间,这种模型的执行效率会比较高。
<div align="center"> <img src="../pics//5e9b10f3-9504-4483-9667-d4770adebf9f.png" width=""/> </div><br>
### 2. 同步-非阻塞
非阻塞意味着用户程序在执行系统调用后还可以继续执行,内核并不是马上执行完 I/O而是以一个错误码来告知用户程序 I/O 还未完成。为了获得 I/O 完成事件,用户程序必须调用多次系统调用去询问内核,甚至是忙等,也就是在一个循环里面一直询问并等待。
由于 CPU 要处理更多的用户程序的询问,因此这种模型的效率是比较低的。
<div align="center"> <img src="../pics//1582217a-ed46-4cac-811e-90d13a65163b.png" width=""/> </div><br>
### 3. 异步
该模式下I/O 操作会立即返回,之后可以处理其它操作,并且在 I/O 完成时会收到一个通知,此时会中断正在处理的操作,然后继续之前的操作。
<div align="center"> <img src="../pics//b4b29aa9-dd2c-467b-b75f-ca6541cb25b5.jpg" width=""/> </div><br>
## select poll epoll
这三个都是 I/O 多路复用的具体实现select 出现的最早,之后是 poll再是 epoll。
### 1. select
```c
int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
```
- fd_set 表示描述符集合;
- readset、writeset 和 exceptset 这三个参数指定让操作系统内核测试读、写和异常条件的描述符;
- timeout 参数告知内核等待所指定描述符中的任何一个就绪可花多少时间;
- 成功调用返回结果大于 0出错返回结果为 -1超时返回结果为 0。
```c
fd_set fd_in, fd_out;
struct timeval tv;
// Reset the sets
FD_ZERO( &fd_in );
FD_ZERO( &fd_out );
// Monitor sock1 for input events
FD_SET( sock1, &fd_in );
// Monitor sock2 for output events
FD_SET( sock2, &fd_out );
// Find out which socket has the largest numeric value as select requires it
int largest_sock = sock1 > sock2 ? sock1 : sock2;
// Wait up to 10 seconds
tv.tv_sec = 10;
tv.tv_usec = 0;
// Call the select
int ret = select( largest_sock + 1, &fd_in, &fd_out, NULL, &tv );
// Check if select actually succeed
if ( ret == -1 )
// report error and abort
else if ( ret == 0 )
// timeout; no event detected
else
{
if ( FD_ISSET( sock1, &fd_in ) )
// input event on sock1
if ( FD_ISSET( sock2, &fd_out ) )
// output event on sock2
}
```
每次调用 select() 都需要将 fd_set \*readfds, fd_set \*writefds, fd_set \*exceptfds 链表内容全部从用户进程内存中复制到操作系统内核中,内核需要将所有 fd_set 遍历一遍,这个过程非常低效。
返回结果中内核并没有声明哪些 fd_set 已经准备好了,所以如果返回值大于 0 时,程序需要遍历所有的 fd_set 判断哪个 I/O 已经准备好。
在 Linux 中 select 最多支持 1024 个 fd_set 同时轮询,其中 1024 由 Linux 内核的 FD_SETSIZE 决定。如果需要打破该限制可以修改 FD_SETSIZE然后重新编译内核。
### 2. poll
```c
int poll (struct pollfd *fds, unsigned int nfds, int timeout);
```
```c
struct pollfd {
int fd; //文件描述符
short events; //监视的请求事件
short revents; //已发生的事件
};
```
```c
// The structure for two events
struct pollfd fds[2];
// Monitor sock1 for input
fds[0].fd = sock1;
fds[0].events = POLLIN;
// Monitor sock2 for output
fds[1].fd = sock2;
fds[1].events = POLLOUT;
// Wait 10 seconds
int ret = poll( &fds, 2, 10000 );
// Check if poll actually succeed
if ( ret == -1 )
// report error and abort
else if ( ret == 0 )
// timeout; no event detected
else
{
// If we detect the event, zero it out so we can reuse the structure
if ( pfd[0].revents & POLLIN )
pfd[0].revents = 0;
// input event on sock1
if ( pfd[1].revents & POLLOUT )
pfd[1].revents = 0;
// output event on sock2
}
```
它和 select() 功能基本相同。同样需要每次将 struct pollfd \*fds 复制到内核,返回后同样需要进行轮询每一个 pollfd 是否已经 I/O 准备好。poll() 取消了 1024 个描述符数量上限但是数量太大以后不能保证执行效率因为复制大量内存到内核十分低效所需时间与描述符数量成正比。poll() 在 pollfd 的重复利用上比 select() 的 fd_set 会更好。
如果在多线程下,如果一个线程对某个描述符调用了 poll() 系统调用,但是另一个线程关闭了该描述符,会导致 poll() 调用结果不确定,该问题同样出现在 select() 中。
### 3. epoll
```c
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
```
```c
// Create the epoll descriptor. Only one is needed per app, and is used to monitor all sockets.
// The function argument is ignored (it was not before, but now it is), so put your favorite number here
int pollingfd = epoll_create( 0xCAFE );
if ( pollingfd < 0 )
// report error
// Initialize the epoll structure in case more members are added in future
struct epoll_event ev = { 0 };
// Associate the connection class instance with the event. You can associate anything
// you want, epoll does not use this information. We store a connection class pointer, pConnection1
ev.data.ptr = pConnection1;
// Monitor for input, and do not automatically rearm the descriptor after the event
ev.events = EPOLLIN | EPOLLONESHOT;
// Add the descriptor into the monitoring list. We can do it even if another thread is
// waiting in epoll_wait - the descriptor will be properly added
if ( epoll_ctl( epollfd, EPOLL_CTL_ADD, pConnection1->getSocket(), &ev ) != 0 )
// report error
// Wait for up to 20 events (assuming we have added maybe 200 sockets before that it may happen)
struct epoll_event pevents[ 20 ];
// Wait for 10 seconds, and retrieve less than 20 epoll_event and store them into epoll_event array
int ready = epoll_wait( pollingfd, pevents, 20, 10000 );
// Check if epoll actually succeed
if ( ret == -1 )
// report error and abort
else if ( ret == 0 )
// timeout; no event detected
else
{
// Check if any events detected
for ( int i = 0; i < ret; i++ )
{
if ( pevents[i].events & EPOLLIN )
{
// Get back our connection pointer
Connection * c = (Connection*) pevents[i].data.ptr;
c->handleReadEvent();
}
}
}
```
epoll 仅仅适用于 Linux OS。
它是 select 和 poll 的增强版,更加灵活而且没有描述符限制。它将用户关心的描述符放到内核的一个事件表中,从而只需要在用户空间和内核空间拷贝一次。
select 和 poll 方式中,进程只有在调用一定的方法后,内核才对所有监视的描述符进行扫描。而 epoll 事先通过 epoll_ctl() 来注册描述符,一旦基于某个描述符就绪时,内核会采用类似 callback 的回调机制,迅速激活这个描述符,当进程调用 epoll_wait() 时便得到通知。
新版本的 epoll_create(int size) 参数 size 不起任何作用,在旧版本的 epoll 中如果描述符的数量大于 size不保证服务质量。
epoll_ctl() 执行一次系统调用,用于向内核注册新的描述符或者是改变某个文件描述符的状态。已注册的描述符在内核中会被维护在一棵红黑树上,通过回调函数内核会将 I/O 准备好的描述符加入到一个链表中管理。
epoll_wait() 取出在内核中通过链表维护的 I/O 准备好的描述符,将他们从内核复制到程序中,不需要像 select/poll 对注册的所有描述符遍历一遍。
epoll 对多线程编程更有友好,同时多个线程对同一个描述符调用了 epoll_wait 也不会产生像 select/poll 的不确定情况。或者一个线程调用了 epoll_wait 另一个线程关闭了同一个描述符也不会产生不确定情况。
## select 和 poll 比较
### 1. 功能
它们提供了几乎相同的功能,但是在一些细节上有所不同:
- select 会修改 fd_set 参数,而 poll 不会;
- select 默认只能监听 1024 个描述符,如果要监听更多的话,需要修改 FD_SETSIZE 之后重新编译;
- poll 提供了更多的事件类型。
### 2. 速度
poll 和 select 在速度上都很慢。
- 它们都采取轮询的方式来找到 I/O 完成的描述符,如果描述符很多,那么速度就会很慢;
- select 只使用每个描述符的 3 位,而 poll 通常需要使用 64 位,因此 poll 需要复制更多的内核空间。
### 3. 可移植性
几乎所有的系统都支持 select但是只有比较新的系统支持 poll。
## eopll 工作模式
epoll_event 有两种触发模式LTlevel trigger和 ETedge trigger
### 1. LT 模式
当 epoll_wait() 检测到描述符事件发生并将此事件通知应用程序,应用程序可以不立即处理该事件。下次调用 epoll_wait() 时,会再次响应应用程序并通知此事件。是默认的一种模式,并且同时支持 Blocking 和 No-Blocking。
### 2. ET 模式
当 epoll_wait() 检测到描述符事件发生并将此事件通知应用程序,应用程序必须立即处理该事件。如果不处理,下次调用 epoll_wait() 时,不会再次响应应用程序并通知此事件。很大程度上减少了 epoll 事件被重复触发的次数,因此效率要比 LT 模式高。只支持 No-Blocking以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。
## select poll epoll 应用场景
很容易产生一种错觉认为只要用 epoll 就可以了select poll 都是历史遗留问题,并没有什么应用场景,其实并不是这样的。
### 1. select 应用场景
select() poll() epoll_wait() 都有一个 timeout 参数,在 select() 中 timeout 的精确度为 1ns而 poll() 和 epoll_wait() 中则为 1ms。所以 select 更加适用于实时要求更高的场景,比如核反应堆的控制。
select 历史更加悠久,它的可移植性更好,几乎被所有主流平台所支持。
### 2. poll 应用场景
poll 没有最大描述符数量的限制,如果平台支持应该采用 poll 且对实时性要求并不是十分严格,而不是 select。
需要同时监控小于 1000 个描述符。那么也没有必要使用 epoll因为这个应用场景下并不能体现 epoll 的优势。
需要监控的描述符状态变化多,而且都是非常短暂的。因为 epoll 中的所有描述符都存储在内核中,造成每次需要对描述符的状态改变都需要通过 epoll_ctl() 进行系统调用频繁系统调用降低效率。epoll 的描述符存储在内核,不容易调试。
### 3. epoll 应用场景
程序只需要运行在 Linux 平台上,有非常大量的描述符需要同时轮询,而且这些连接最好是长连接。
### 4. 性能对比
> [epoll Scalability Web Page](http://lse.sourceforge.net/epoll/index.html)
# 参考资料
- 鸟哥. 鸟 哥 的 Linux 私 房 菜 基 础 篇 第 三 版[J]. 2009.
- [Linux 平台上的软件包管理](https://www.ibm.com/developerworks/cn/linux/l-cn-rpmdpkg/index.html)
- [Boost application performance using asynchronous I/O](https://www.ibm.com/developerworks/linux/library/l-async/)
- [Synchronous and Asynchronous I/O](https://msdn.microsoft.com/en-us/library/windows/desktop/aa365683(v=vs.85).aspx)
- [Linux IO 模式及 select、poll、epoll 详解](https://segmentfault.com/a/1190000003063859)
- [poll vs select vs event-based](https://daniel.haxx.se/docs/poll-vs-select.html)
- [Linux 之守护进程、僵死进程与孤儿进程](http://liubigbin.github.io/2016/03/11/Linux-%E4%B9%8B%E5%AE%88%E6%8A%A4%E8%BF%9B%E7%A8%8B%E3%80%81%E5%83%B5%E6%AD%BB%E8%BF%9B%E7%A8%8B%E4%B8%8E%E5%AD%A4%E5%84%BF%E8%BF%9B%E7%A8%8B/)
- [Linux process states](https://idea.popcount.org/2012-12-11-linux-process-states/)
- [GUID Partition Table](https://en.wikipedia.org/wiki/GUID_Partition_Table)

343
notes/Socket.md Normal file
View File

@ -0,0 +1,343 @@
<!-- GFM-TOC -->
* [一、I/O 复用](#一io-复用)
* [I/O 模型](#io-模型)
* [select/poll/epoll](#selectpollepoll)
* [select 和 poll 比较](#select-和-poll-比较)
* [eopll 工作模式](#eopll-工作模式)
* [select poll epoll 应用场景](#select-poll-epoll-应用场景)
* [参考资料](#参考资料)
<!-- GFM-TOC -->
# 一、I/O 复用
## I/O 模型
一个输入操作通常包括两个阶段:
- 等待数据准备好
- 从内核向进程复制数据
对于一个套接字上的输入操作,第一步通常涉及等待数据从网络中到达。当所等待分组到达时,它被复制到内核中的某个缓冲区。第二步就是把数据从内核缓冲区复制到应用进程缓冲区。
Unix 下有五种 I/O 模型:
- 阻塞式 I/O
- 非阻塞式 I/O
- I/O 复用select 和 poll
- 信号驱动式 I/OSIGIO
- 异步 I/OAIO
### 1. 阻塞式 I/O
应用进程被阻塞,直到数据复制到应用进程缓冲区中才返回。
应该注意到,在阻塞的过程中,其它程序还可以执行,因此阻塞不意味着整个操作系统都被阻塞。因为其他程序还可以执行,因此不消耗 CPU 时间,这种模型的执行效率会比较高。
下图中recvfrom 用于接收 Socket 传来的数据,并复制到应用进程的缓冲区 buf 中。这里把 recvfrom() 当成系统调用。
```c
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);
```
<div align="center"> <img src="../pics//1492928416812_4.png"/> </div><br>
### 2. 非阻塞式 I/O
应用进程执行系统调用之后,内核返回一个错误码。应用进程可以继续执行,但是需要不断的执行系统调用来获知 I/O 是否完成这种方式成为轮询polling
由于 CPU 要处理更多的系统调用,因此这种模型是比较低效的。
<div align="center"> <img src="../pics//1492929000361_5.png"/> </div><br>
### 3. I/O 复用
使用 select 或者 poll 等待数据,并且可以等待多个套接字中的任何一个变为可读,这一过程会被阻塞,当某一个套接字可读时返回。之后再使用 recvfrom 把数据从内核复制到进程中。
它可以让单个进程具有处理多个 I/O 事件的能力。又被称为 Event Driven I/O即事件驱动 I/O。
如果一个 Web 服务器没有 I/O 复用,那么每一个 Socket 连接都需要创建一个线程去处理。如果同时有几万个连接那么就需要创建相同数量的线程。并且相比于多进程和多线程技术I/O 复用不需要进程线程创建和切换的开销,系统开销更小。
<div align="center"> <img src="../pics//1492929444818_6.png"/> </div><br>
### 4. 信号驱动 I/O
应用进程使用 sigaction 系统调用,内核立即返回,应用进程可以继续执行,也就是说等待数据阶段应用进程是非阻塞的。内核在数据到达时向应用进程发送 SIGIO 信号,应用进程收到之后在信号处理程序中调用 recvfrom 将数据从内核复制到应用进程中。
相比于非阻塞式 I/O 的轮询方式,信号驱动 I/O 的 CPU 利用率更高。
<div align="center"> <img src="../pics//1492929553651_7.png"/> </div><br>
### 5. 异步 I/O
进行 aio_read 系统调用会立即返回,应用进程继续执行,不会被阻塞,内核会在所有操作完成之后向应用进程发送信号。
异步 I/O 与信号驱动 I/O 的区别在于,异步 I/O 的信号是通知应用进程 I/O 完成,而信号驱动 I/O 的信号是通知应用进程可以开始 I/O。
<div align="center"> <img src="../pics//1492930243286_8.png"/> </div><br>
### 6. 同步 I/O 与异步 I/O
- 同步 I/O应用进程在调用 recvfrom 操作时会阻塞。
- 异步 I/O不会阻塞。
阻塞式 I/O、非阻塞式 I/O、I/O 复用和信号驱动 I/O 都是同步 I/O虽然非阻塞式 I/O 和信号驱动 I/O 在等待数据阶段不会阻塞,但是在之后的将数据从内核复制到应用进程这个操作会阻塞。
### 7. 五大 I/O 模型比较
前四种 I/O 模型的主要区别在于第一个阶段,而第二个阶段是一样的:将数据从内核复制到应用进程过程中,应用进程会被阻塞。
<div align="center"> <img src="../pics//1492928105791_3.png"/> </div><br>
## select/poll/epoll
这三个都是 I/O 多路复用的具体实现select 出现的最早,之后是 poll再是 epoll。
### 1. select
```c
int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
```
fd_set 表示描述符集合类型有三个参数readset、writeset 和 exceptset分别对应读、写、异常条件的描述符集合。
timeout 参数告知内核等待所指定描述符中的任何一个就绪可花多少时间;
成功调用返回结果大于 0出错返回结果为 -1超时返回结果为 0。
每次调用 select 都需要将 fd_set \*readfds, fd_set \*writefds, fd_set \*exceptfds 链表内容全部从应用进程缓冲复制到内核缓冲。
返回结果中内核并没有声明 fd_set 中哪些描述符已经准备好,所以如果返回值大于 0 时,应用进程需要遍历所有的 fd_set。
select 最多支持 1024 个描述符,其中 1024 由内核的 FD_SETSIZE 决定。如果需要打破该限制可以修改 FD_SETSIZE然后重新编译内核。
```c
fd_set fd_in, fd_out;
struct timeval tv;
// Reset the sets
FD_ZERO( &fd_in );
FD_ZERO( &fd_out );
// Monitor sock1 for input events
FD_SET( sock1, &fd_in );
// Monitor sock2 for output events
FD_SET( sock2, &fd_out );
// Find out which socket has the largest numeric value as select requires it
int largest_sock = sock1 > sock2 ? sock1 : sock2;
// Wait up to 10 seconds
tv.tv_sec = 10;
tv.tv_usec = 0;
// Call the select
int ret = select( largest_sock + 1, &fd_in, &fd_out, NULL, &tv );
// Check if select actually succeed
if ( ret == -1 )
// report error and abort
else if ( ret == 0 )
// timeout; no event detected
else
{
if ( FD_ISSET( sock1, &fd_in ) )
// input event on sock1
if ( FD_ISSET( sock2, &fd_out ) )
// output event on sock2
}
```
### 2. poll
```c
int poll(struct pollfd *fds, unsigned int nfds, int timeout);
```
```c
struct pollfd {
int fd; //文件描述符
short events; //监视的请求事件
short revents; //已发生的事件
};
```
它和 select 功能基本相同。同样需要每次将描述符从应用进程复制到内核poll 调用返回后同样需要进行轮询才能知道哪些描述符已经准备好。
poll 取消了 1024 个描述符数量上限,但是数量太大以后不能保证执行效率,因为复制大量内存到内核十分低效,所需时间与描述符数量成正比。
poll 在描述符的重复利用上比 select 的 fd_set 会更好。
如果在多线程下,如果一个线程对某个描述符调用了 poll 系统调用,但是另一个线程关闭了该描述符,会导致 poll 调用结果不确定,该问题同样出现在 select 中。
```c
// The structure for two events
struct pollfd fds[2];
// Monitor sock1 for input
fds[0].fd = sock1;
fds[0].events = POLLIN;
// Monitor sock2 for output
fds[1].fd = sock2;
fds[1].events = POLLOUT;
// Wait 10 seconds
int ret = poll( &fds, 2, 10000 );
// Check if poll actually succeed
if ( ret == -1 )
// report error and abort
else if ( ret == 0 )
// timeout; no event detected
else
{
// If we detect the event, zero it out so we can reuse the structure
if ( pfd[0].revents & POLLIN )
pfd[0].revents = 0;
// input event on sock1
if ( pfd[1].revents & POLLOUT )
pfd[1].revents = 0;
// output event on sock2
}
```
### 3. epoll
```c
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
```
epoll 仅仅适用于 Linux OS。
它是 select 和 poll 的增强版,更加灵活而且没有描述符数量限制。
它将用户关心的描述符放到内核的一个事件表中,从而只需要在用户空间和内核空间拷贝一次。
select 和 poll 方式中,进程只有在调用一定的方法后,内核才对所有监视的描述符进行扫描。而 epoll 事先通过 epoll_ctl() 来注册描述符,一旦基于某个描述符就绪时,内核会采用类似 callback 的回调机制,迅速激活这个描述符,当进程调用 epoll_wait() 时便得到通知。
新版本的 epoll_create(int size) 参数 size 不起任何作用,在旧版本的 epoll 中如果描述符的数量大于 size不保证服务质量。
epoll_ctl() 执行一次系统调用,用于向内核注册新的描述符或者是改变某个文件描述符的状态。已注册的描述符在内核中会被维护在一棵红黑树上,通过回调函数内核会将 I/O 准备好的描述符加入到一个链表中管理。
epoll_wait() 取出在内核中通过链表维护的 I/O 准备好的描述符,将他们从内核复制到应用进程中,不需要像 select/poll 对注册的所有描述符遍历一遍。
epoll 对多线程编程更有友好,同时多个线程对同一个描述符调用了 epoll_wait() 也不会产生像 select/poll 的不确定情况。或者一个线程调用了 epoll_wait 另一个线程关闭了同一个描述符也不会产生不确定情况。
```c
// Create the epoll descriptor. Only one is needed per app, and is used to monitor all sockets.
// The function argument is ignored (it was not before, but now it is), so put your favorite number here
int pollingfd = epoll_create( 0xCAFE );
if ( pollingfd < 0 )
// report error
// Initialize the epoll structure in case more members are added in future
struct epoll_event ev = { 0 };
// Associate the connection class instance with the event. You can associate anything
// you want, epoll does not use this information. We store a connection class pointer, pConnection1
ev.data.ptr = pConnection1;
// Monitor for input, and do not automatically rearm the descriptor after the event
ev.events = EPOLLIN | EPOLLONESHOT;
// Add the descriptor into the monitoring list. We can do it even if another thread is
// waiting in epoll_wait - the descriptor will be properly added
if ( epoll_ctl( epollfd, EPOLL_CTL_ADD, pConnection1->getSocket(), &ev ) != 0 )
// report error
// Wait for up to 20 events (assuming we have added maybe 200 sockets before that it may happen)
struct epoll_event pevents[ 20 ];
// Wait for 10 seconds, and retrieve less than 20 epoll_event and store them into epoll_event array
int ready = epoll_wait( pollingfd, pevents, 20, 10000 );
// Check if epoll actually succeed
if ( ret == -1 )
// report error and abort
else if ( ret == 0 )
// timeout; no event detected
else
{
// Check if any events detected
for ( int i = 0; i < ret; i++ )
{
if ( pevents[i].events & EPOLLIN )
{
// Get back our connection pointer
Connection * c = (Connection*) pevents[i].data.ptr;
c->handleReadEvent();
}
}
}
```
## select 和 poll 比较
### 1. 功能
它们提供了几乎相同的功能,但是在一些细节上有所不同:
- select 会修改 fd_set 参数,而 poll 不会;
- select 默认只能监听 1024 个描述符,如果要监听更多的话,需要修改 FD_SETSIZE 之后重新编译;
- poll 提供了更多的事件类型。
### 2. 速度
poll 和 select 在速度上都很慢。
- 它们都采取轮询的方式来找到 I/O 完成的描述符,如果描述符很多,那么速度就会很慢;
- select 只使用每个描述符的 3 位,而 poll 通常需要使用 64 位,因此 poll 需要复制更多的内核空间。
### 3. 可移植性
几乎所有的系统都支持 select但是只有比较新的系统支持 poll。
## eopll 工作模式
epoll_event 有两种触发模式LTlevel trigger和 ETedge trigger
### 1. LT 模式
当 epoll_wait() 检测到描述符事件发生并将此事件通知应用程序,应用程序可以不立即处理该事件。下次调用 epoll_wait() 时,会再次响应应用程序并通知此事件。是默认的一种模式,并且同时支持 Blocking 和 No-Blocking。
### 2. ET 模式
当 epoll_wait() 检测到描述符事件发生并将此事件通知应用程序,应用程序必须立即处理该事件。如果不处理,下次调用 epoll_wait() 时,不会再次响应应用程序并通知此事件。很大程度上减少了 epoll 事件被重复触发的次数,因此效率要比 LT 模式高。只支持 No-Blocking以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。
## select poll epoll 应用场景
很容易产生一种错觉认为只要用 epoll 就可以了select poll 都是历史遗留问题,并没有什么应用场景,其实并不是这样的。
### 1. select 应用场景
select() poll() epoll_wait() 都有一个 timeout 参数,在 select() 中 timeout 的精确度为 1ns而 poll() 和 epoll_wait() 中则为 1ms。所以 select 更加适用于实时要求更高的场景,比如核反应堆的控制。
select 历史更加悠久,它的可移植性更好,几乎被所有主流平台所支持。
### 2. poll 应用场景
poll 没有最大描述符数量的限制,如果平台支持应该采用 poll 且对实时性要求并不是十分严格,而不是 select。
需要同时监控小于 1000 个描述符。那么也没有必要使用 epoll因为这个应用场景下并不能体现 epoll 的优势。
需要监控的描述符状态变化多,而且都是非常短暂的。因为 epoll 中的所有描述符都存储在内核中,造成每次需要对描述符的状态改变都需要通过 epoll_ctl() 进行系统调用频繁系统调用降低效率。epoll 的描述符存储在内核,不容易调试。
### 3. epoll 应用场景
程序只需要运行在 Linux 平台上,有非常大量的描述符需要同时轮询,而且这些连接最好是长连接。
### 4. 性能对比
> [epoll Scalability Web Page](http://lse.sourceforge.net/epoll/index.html)
# 参考资料
- Stevens W R, Fenner B, Rudoff A M. UNIX network programming[M]. Addison-Wesley Professional, 2004.
- [Boost application performance using asynchronous I/O](https://www.ibm.com/developerworks/linux/library/l-async/)
- [Synchronous and Asynchronous I/O](https://msdn.microsoft.com/en-us/library/windows/desktop/aa365683(v=vs.85).aspx)
- [Linux IO 模式及 select、poll、epoll 详解](https://segmentfault.com/a/1190000003063859)
- [poll vs select vs event-based](https://daniel.haxx.se/docs/poll-vs-select.html)

BIN
pics/1492928105791_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

BIN
pics/1492928416812_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

BIN
pics/1492929000361_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

BIN
pics/1492929444818_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

BIN
pics/1492929553651_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

BIN
pics/1492930243286_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB