auto commit

This commit is contained in:
CyC2018 2018-06-14 12:51:36 +08:00
parent ebb3ce62d3
commit 2e2d499a45
6 changed files with 128 additions and 0 deletions

View File

@ -31,6 +31,9 @@
* [红黑树](#红黑树)
* [散列表](#散列表)
* [小结](#小结)
* [七、其它](#七其它)
* [汉诺塔](#汉诺塔)
* [哈夫曼编码](#哈夫曼编码)
* [参考资料](#参考资料)
<!-- GFM-TOC -->
@ -2032,6 +2035,131 @@ public class SparseVector {
}
```
# 七、其它
## 汉诺塔
这是一个经典的递归问题,分为三步求解:
1. 将 n-1 个圆盘从 from -> buffer
2. 将 1 个圆盘从 from -> to
3. 将 n-1 个圆盘从 buffer -> to
如果只有一个圆盘那么只需要进行一次移动操作从上面的移动步骤可以知道n 圆盘需要移动 (n-1)+1+(n-1) = 2n-1 次。
<div align="center"> <img src="../pics//54f1e052-0596-4b5e-833c-e80d75bf3f9b.png" width="300"/> </div><br>
<div align="center"> <img src="../pics//8587132a-021d-4f1f-a8ec-5a9daa7157a7.png" width="300"/> </div><br>
<div align="center"> <img src="../pics//2861e923-4862-4526-881c-15529279d49c.png" width="300"/> </div><br>
<div align="center"> <img src="../pics//1c4e8185-8153-46b6-bd5a-288b15feeae6.png" width="300"/> </div><br>
```java
public class Hanoi {
public static void move(int n, String from, String buffer, String to) {
if (n == 1) {
System.out.println("from " + from + " to " + to);
return;
}
move(n - 1, from, to, buffer);
move(1, from, buffer, to);
move(n - 1, buffer, from, to);
}
public static void main(String[] args) {
Hanoi.move(3, "H1", "H2", "H3");
}
}
```
```html
from H1 to H3
from H1 to H2
from H3 to H2
from H1 to H3
from H2 to H1
from H2 to H3
from H1 to H3
```
## 哈夫曼编码
哈夫曼编码根据数据出现的频率对数据进行编码,从而压缩原始数据。
例如对于文本文件,其中各种字符出现的次数如下:
- a : 10
- b : 20
- c : 40
- d : 80
可以将每种字符转换成二进制编码,例如将 a 转换为 00b 转换为 01c 转换为 10d 转换为 11。这是最简单的一种编码方式没有考虑各个字符的权值出现频率。而哈夫曼编码能让出现频率最大的字符编码最短从而保证最终的编码长度最短。
首先生成一颗哈夫曼树,每次生成过程中选取频率最少的两个节点,生成一个新节点作为它们的父节点,并且新节点的频率为两个节点的和。选取频率最少的原因是,生成过程使得先选取的节点在树的最底层,那么需要的编码长度更长,频率更少可以使得总编码长度更少。
生成编码时,从根节点出发,向左遍历则添加二进制位 0向右则添加二进制位 1直到遍历到根节点根节点代表的字符的编码就是这个路径编码。
<div align="center"> <img src="../pics//3ff4f00a-2321-48fd-95f4-ce6001332151.png"/> </div><br>
```java
public class Huffman {
private class Node implements Comparable<Node> {
char ch;
int freq;
boolean isLeaf;
Node left, right;
public Node(char ch, int freq) {
this.ch = ch;
this.freq = freq;
isLeaf = true;
}
public Node(Node left, Node right, int freq) {
this.left = left;
this.right = right;
this.freq = freq;
isLeaf = false;
}
@Override
public int compareTo(Node o) {
return this.freq - o.freq;
}
}
public Map<Character, String> encode(Map<Character, Integer> frequencyForChar) {
PriorityQueue<Node> priorityQueue = new PriorityQueue<>();
for (Character c : frequencyForChar.keySet()) {
priorityQueue.add(new Node(c, frequencyForChar.get(c)));
}
while (priorityQueue.size() != 1) {
Node node1 = priorityQueue.poll();
Node node2 = priorityQueue.poll();
priorityQueue.add(new Node(node1, node2, node1.freq + node2.freq));
}
return encode(priorityQueue.poll());
}
private Map<Character, String> encode(Node root) {
Map<Character, String> encodingForChar = new HashMap<>();
encode(root, "", encodingForChar);
return encodingForChar;
}
private void encode(Node node, String encoding, Map<Character, String> encodingForChar) {
if (node.isLeaf) {
encodingForChar.put(node.ch, encoding);
return;
}
encode(node.left, encoding + '0', encodingForChar);
encode(node.right, encoding + '1', encodingForChar);
}
}
```
# 参考资料
- Sedgewick, Robert, and Kevin Wayne. _Algorithms_. Addison-Wesley Professional, 2011.

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB