auto commit

This commit is contained in:
CyC2018 2019-03-05 17:28:49 +08:00
parent 31bb879805
commit 2db2c097bc

View File

@ -3199,31 +3199,34 @@ return -1.
- 物品大小:面额
- 物品价值:数量
因为硬币可以重复使用,因此这是一个完全背包问题。完全背包只需要将01背包中逆序遍历bp数组改为正序遍历即可。
因为硬币可以重复使用,因此这是一个完全背包问题。完全背包只需要将 0-1 背包中逆序遍历 dp 数组改为正序遍历即可。
```java
public int coinChange(int[] coins, int amount) {
if(amount == 0) return 0;
int[] bp = new int[amount + 1];
for(int coin : coins){
for(int i = coin; i <= amount; i++){ //将逆序遍历改为正序遍历
if(i == coin)
bp[i] = 1;
else if(bp[i] == 0 && bp[i - coin] != 0)
bp[i] = bp[i - coin] + 1;
else if(bp[i - coin] != 0)
bp[i] = Math.min(bp[i], bp[i - coin] + 1);
if (amount == 0 || coins == null || coins.length == 0) {
return 0;
}
int[] dp = new int[amount + 1];
for (int coin : coins) {
for (int i = coin; i <= amount; i++) { //将逆序遍历改为正序遍历
if (i == coin) {
dp[i] = 1;
} else if (dp[i] == 0 && dp[i - coin] != 0) {
dp[i] = dp[i - coin] + 1;
} else if (dp[i - coin] != 0) {
dp[i] = Math.min(dp[i], dp[i - coin] + 1);
}
}
}
return bp[amount] == 0 ? -1 : bp[amount];
return dp[amount] == 0 ? -1 : dp[amount];
}
```
**找零钱的硬币数组合**
[518. Coin Change 2 (Medium)](https://leetcode.com/problems/coin-change-2/description/)
[518\. Coin Change 2 (Medium)](https://leetcode.com/problems/coin-change-2/description/)
```html
```text-html-basic
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
@ -3233,14 +3236,17 @@ Explanation: there are four ways to make up the amount:
5=1+1+1+1+1
```
完全背包问题使用dp记录可达成目标的组合数目。
完全背包问题,使用 dp 记录可达成目标的组合数目。
```java
public int change(int amount, int[] coins) {
if (amount == 0 || coins == null || coins.length == 0) {
return 0;
}
int[] dp = new int[amount + 1];
dp[0] = 1;
for(int coin : coins){
for(int i = coin; i <= amount; i++){
for (int coin : coins) {
for (int i = coin; i <= amount; i++) {
dp[i] += dp[i - coin];
}
}
@ -3260,7 +3266,7 @@ Return true because "leetcode" can be segmented as "leet code".
dict 中的单词没有使用次数的限制,因此这是一个完全背包问题。该问题涉及到字典中单词的使用顺序,因此可理解为涉及顺序的完全背包问题。
求解该类型问题时应调整两次循环的顺序0-1 背包对物品的迭代是在最外层,而涉及顺序的完全背包问题对物品的迭代是在最里层。
求解顺序的完全背包问题时,对物品的迭代应该放在最里层。
```java
public boolean wordBreak(String s, List<String> wordDict) {
@ -3268,7 +3274,7 @@ public boolean wordBreak(String s, List<String> wordDict) {
boolean[] dp = new boolean[n + 1];
dp[0] = true;
for (int i = 1; i <= n; i++) {
for (String word : wordDict) { // 完全一个物品可以使用多次
for (String word : wordDict) { // 对物品的迭代应该放在最里层
int len = word.length();
if (len <= i && word.equals(s.substring(i - len, i))) {
dp[i] = dp[i] || dp[i - len];