diff --git a/notes/Leetcode 题解 - 动态规划.md b/notes/Leetcode 题解 - 动态规划.md index 305174be..643b0dc7 100644 --- a/notes/Leetcode 题解 - 动态规划.md +++ b/notes/Leetcode 题解 - 动态规划.md @@ -1055,7 +1055,10 @@ public int combinationSum4(int[] nums, int target) { 题目描述:交易之后需要有一天的冷却时间。 -

+ +该题为马尔可夫过程,分为A观望,B持股,C冷却三个状态 +状态转移图:A-(观望)->A, A-(买入|-price)->B, B-(观望)->B, B-(卖出|+price)->C, C-(冷却)->A +可用维特比算法求解 ```java public int maxProfit(int[] prices) { @@ -1063,19 +1066,17 @@ public int maxProfit(int[] prices) { return 0; } int N = prices.length; - int[] buy = new int[N]; - int[] s1 = new int[N]; - int[] sell = new int[N]; - int[] s2 = new int[N]; - s1[0] = buy[0] = -prices[0]; - sell[0] = s2[0] = 0; + int[] A = new int[N]; + int[] B = new int[N]; + int[] C = new int[N]; + A[0] = 0; + B[0] = C[0] = -prices[0]; for (int i = 1; i < N; i++) { - buy[i] = s2[i - 1] - prices[i]; - s1[i] = Math.max(buy[i - 1], s1[i - 1]); - sell[i] = Math.max(buy[i - 1], s1[i - 1]) + prices[i]; - s2[i] = Math.max(s2[i - 1], sell[i - 1]); + A[i] = Math.max(A[i - 1], C[i - 1]); + B[i] = Math.max(B[i - 1], A[i - 1] - prices[i]); + C[i] = B[i - 1] + prices[i]; } - return Math.max(sell[N - 1], s2[N - 1]); + return Math.max(A[N - 1], C[N - 1]); } ``` @@ -1098,24 +1099,22 @@ The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8. 题目描述:每交易一次,都要支付一定的费用。 -

+ +分为A观望,B持股,两个状态 +状态转移图:A-(观望)->A, A-(买入|-price)->B, B-(观望)->B, B-(卖出|+price|-fee)->A ```java public int maxProfit(int[] prices, int fee) { int N = prices.length; - int[] buy = new int[N]; - int[] s1 = new int[N]; - int[] sell = new int[N]; - int[] s2 = new int[N]; - s1[0] = buy[0] = -prices[0]; - sell[0] = s2[0] = 0; + int[] A = new int[N]; + int[] B = new int[N]; + A[0] = 0; + B[0] = -prices[0]; for (int i = 1; i < N; i++) { - buy[i] = Math.max(sell[i - 1], s2[i - 1]) - prices[i]; - s1[i] = Math.max(buy[i - 1], s1[i - 1]); - sell[i] = Math.max(buy[i - 1], s1[i - 1]) - fee + prices[i]; - s2[i] = Math.max(s2[i - 1], sell[i - 1]); + A[i] = Math.max(A[i - 1], B[i - 1] + prices[i] -fee); + B[i] = Math.max(A[i - 1] - prices[i], B[i - 1]); } - return Math.max(sell[N - 1], s2[N - 1]); + return A[N - 1]; } ```