auto commit
This commit is contained in:
parent
efab8d1fcf
commit
1e5a462d61
|
@ -1,37 +1,46 @@
|
|||
# 16. 数值的整数次方
|
||||
|
||||
[NowCoder](https://www.nowcoder.com/practice/1a834e5e3e1a4b7ba251417554e07c00?tpId=13&tqId=11165&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
|
||||
## 题目链接
|
||||
|
||||
[牛客网](https://www.nowcoder.com/practice/1a834e5e3e1a4b7ba251417554e07c00?tpId=13&tqId=11165&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
|
||||
|
||||
## 题目描述
|
||||
|
||||
给定一个 double 类型的浮点数 base 和 int 类型的整数 exponent,求 base 的 exponent 次方。
|
||||
给定一个 double 类型的浮点数 x和 int 类型的整数 n,求 x 的 n 次方。
|
||||
|
||||
## 解题思路
|
||||
|
||||
下面的讨论中 x 代表 base,n 代表 exponent。
|
||||
<!-- <div align="center"><img src="https://latex.codecogs.com/gif.latex?x^n=\left\{\begin{array}{rcl}x^{n/2}*x^{n/2}&&{n\%2=0}\\x*(x^{n/2}*x^{n/2})&&{n\%2=1}\end{array}\right." class="mathjax-pic"/></div> <br> -->
|
||||
|
||||
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?x^n=\left\{\begin{array}{rcl}(x*x)^{n/2}&&{n\%2=0}\\x*(x*x)^{n/2}&&{n\%2=1}\end{array}\right." class="mathjax-pic"/></div> <br>-->
|
||||
最直观的解法是将 x 重复乘 n 次,x\*x\*x...\*x,那么时间复杂度为 O(N)。因为乘法是可交换的,所以可以将上述操作拆开成两半 (x\*x..\*x)\* (x\*x..\*x),两半的计算是一样的,因此只需要计算一次。而且对于新拆开的计算,又可以继续拆开。这就是分治思想,将原问题的规模拆成多个规模较小的子问题,最后子问题的解合并起来。
|
||||
|
||||
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/48b1d459-8832-4e92-938a-728aae730739.jpg" width="330px"> </div><br>
|
||||
本题中子问题是 x<sup>n/2</sup>,在将子问题合并时将子问题的解乘于自身相乘即可。但如果 n 不为偶数,那么拆成两半还会剩下一个 x,在将子问题合并时还需要需要多乘于一个 x。
|
||||
|
||||
|
||||
|
||||
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/image-20201105012506187.png" width="400px"> </div><br>
|
||||
|
||||
|
||||
因为 (x\*x)<sup>n/2</sup> 可以通过递归求解,并且每次递归 n 都减小一半,因此整个算法的时间复杂度为 O(logN)。
|
||||
|
||||
```java
|
||||
public double Power(double base, int exponent) {
|
||||
if (exponent == 0)
|
||||
return 1;
|
||||
if (exponent == 1)
|
||||
return base;
|
||||
public double Power(double x, int n) {
|
||||
boolean isNegative = false;
|
||||
if (exponent < 0) {
|
||||
exponent = -exponent;
|
||||
if (n < 0) {
|
||||
n = -n;
|
||||
isNegative = true;
|
||||
}
|
||||
double pow = Power(base * base, exponent / 2);
|
||||
if (exponent % 2 != 0)
|
||||
pow = pow * base;
|
||||
return isNegative ? 1 / pow : pow;
|
||||
double res = pow(x, n);
|
||||
return isNegative ? 1 / res : res;
|
||||
}
|
||||
|
||||
private double pow(double x, int n) {
|
||||
if (n == 0) return 1;
|
||||
if (n == 1) return x;
|
||||
double res = pow(x, n / 2);
|
||||
res = res * res;
|
||||
if (n % 2 != 0) res *= x;
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -40,4 +49,5 @@ public double Power(double base, int exponent) {
|
|||
|
||||
|
||||
|
||||
|
||||
<div align="center"><img width="320px" src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/githubio/公众号二维码-2.png"></img></div>
|
||||
|
|
|
@ -1,37 +1,46 @@
|
|||
# 16. 数值的整数次方
|
||||
|
||||
[NowCoder](https://www.nowcoder.com/practice/1a834e5e3e1a4b7ba251417554e07c00?tpId=13&tqId=11165&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
|
||||
## 题目链接
|
||||
|
||||
[牛客网](https://www.nowcoder.com/practice/1a834e5e3e1a4b7ba251417554e07c00?tpId=13&tqId=11165&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
|
||||
|
||||
## 题目描述
|
||||
|
||||
给定一个 double 类型的浮点数 base 和 int 类型的整数 exponent,求 base 的 exponent 次方。
|
||||
给定一个 double 类型的浮点数 x和 int 类型的整数 n,求 x 的 n 次方。
|
||||
|
||||
## 解题思路
|
||||
|
||||
下面的讨论中 x 代表 base,n 代表 exponent。
|
||||
<!-- <div align="center"><img src="https://latex.codecogs.com/gif.latex?x^n=\left\{\begin{array}{rcl}x^{n/2}*x^{n/2}&&{n\%2=0}\\x*(x^{n/2}*x^{n/2})&&{n\%2=1}\end{array}\right." class="mathjax-pic"/></div> <br> -->
|
||||
|
||||
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?x^n=\left\{\begin{array}{rcl}(x*x)^{n/2}&&{n\%2=0}\\x*(x*x)^{n/2}&&{n\%2=1}\end{array}\right." class="mathjax-pic"/></div> <br>-->
|
||||
最直观的解法是将 x 重复乘 n 次,x\*x\*x...\*x,那么时间复杂度为 O(N)。因为乘法是可交换的,所以可以将上述操作拆开成两半 (x\*x..\*x)\* (x\*x..\*x),两半的计算是一样的,因此只需要计算一次。而且对于新拆开的计算,又可以继续拆开。这就是分治思想,将原问题的规模拆成多个规模较小的子问题,最后子问题的解合并起来。
|
||||
|
||||
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/48b1d459-8832-4e92-938a-728aae730739.jpg" width="330px"> </div><br>
|
||||
本题中子问题是 x<sup>n/2</sup>,在将子问题合并时将子问题的解乘于自身相乘即可。但如果 n 不为偶数,那么拆成两半还会剩下一个 x,在将子问题合并时还需要需要多乘于一个 x。
|
||||
|
||||
|
||||
|
||||
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/image-20201105012506187.png" width="400px"> </div><br>
|
||||
|
||||
|
||||
因为 (x\*x)<sup>n/2</sup> 可以通过递归求解,并且每次递归 n 都减小一半,因此整个算法的时间复杂度为 O(logN)。
|
||||
|
||||
```java
|
||||
public double Power(double base, int exponent) {
|
||||
if (exponent == 0)
|
||||
return 1;
|
||||
if (exponent == 1)
|
||||
return base;
|
||||
public double Power(double x, int n) {
|
||||
boolean isNegative = false;
|
||||
if (exponent < 0) {
|
||||
exponent = -exponent;
|
||||
if (n < 0) {
|
||||
n = -n;
|
||||
isNegative = true;
|
||||
}
|
||||
double pow = Power(base * base, exponent / 2);
|
||||
if (exponent % 2 != 0)
|
||||
pow = pow * base;
|
||||
return isNegative ? 1 / pow : pow;
|
||||
double res = pow(x, n);
|
||||
return isNegative ? 1 / res : res;
|
||||
}
|
||||
|
||||
private double pow(double x, int n) {
|
||||
if (n == 0) return 1;
|
||||
if (n == 1) return x;
|
||||
double res = pow(x, n / 2);
|
||||
res = res * res;
|
||||
if (n % 2 != 0) res *= x;
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -40,4 +49,5 @@ public double Power(double base, int exponent) {
|
|||
|
||||
|
||||
|
||||
|
||||
<div align="center"><img width="320px" src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/githubio/公众号二维码-2.png"></img></div>
|
||||
|
|
BIN
notes/pics/image-20201105012506187.png
Normal file
BIN
notes/pics/image-20201105012506187.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 9.7 KiB |
Loading…
Reference in New Issue
Block a user