auto commit

This commit is contained in:
CyC2018 2020-11-04 01:53:39 +08:00
parent 4b11ab58bb
commit 164e9a954d
2 changed files with 56 additions and 48 deletions

View File

@ -1,9 +1,36 @@
# 40. 最小的 K 个数
[NowCoder](https://www.nowcoder.com/practice/6a296eb82cf844ca8539b57c23e6e9bf?tpId=13&tqId=11182&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
## 题目链接
[牛客网](https://www.nowcoder.com/practice/6a296eb82cf844ca8539b57c23e6e9bf?tpId=13&tqId=11182&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
## 解题思路
### 大小为 K 的最小堆
- 复杂度O(NlogK) + O(K)
- 特别适合处理海量数据
维护一个大小为 K 的最小堆过程如下使用大顶堆在添加一个元素之后如果大顶堆的大小大于 K那么将大顶堆的堆顶元素去除也就是将当前堆中值最大的元素去除从而使得留在堆中的元素都比被去除的元素来得小
应该使用大顶堆来维护最小堆而不能直接创建一个小顶堆并设置一个大小企图让小顶堆中的元素都是最小元素
Java PriorityQueue 实现了堆的能力PriorityQueue 默认是小顶堆可以在在初始化时使用 Lambda 表达式 (o1, o2) -> o2 - o1 来实现大顶堆其它语言也有类似的堆数据结构
```java
public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k) {
if (k > nums.length || k <= 0)
return new ArrayList<>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> o2 - o1);
for (int num : nums) {
maxHeap.add(num);
if (maxHeap.size() > k)
maxHeap.poll();
}
return new ArrayList<>(maxHeap);
}
```
### 快速选择
- 复杂度O(N) + O(1)
@ -57,29 +84,6 @@ private void swap(int[] nums, int i, int j) {
}
```
### 大小为 K 的最小堆
- 复杂度O(NlogK) + O(K)
- 特别适合处理海量数据
应该使用大顶堆来维护最小堆而不能直接创建一个小顶堆并设置一个大小企图让小顶堆中的元素都是最小元素
维护一个大小为 K 的最小堆过程如下在添加一个元素之后如果大顶堆的大小大于 K那么需要将大顶堆的堆顶元素去除
```java
public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k) {
if (k > nums.length || k <= 0)
return new ArrayList<>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> o2 - o1);
for (int num : nums) {
maxHeap.add(num);
if (maxHeap.size() > k)
maxHeap.poll();
}
return new ArrayList<>(maxHeap);
}
```

View File

@ -1,9 +1,36 @@
# 40. 最小的 K 个数
[NowCoder](https://www.nowcoder.com/practice/6a296eb82cf844ca8539b57c23e6e9bf?tpId=13&tqId=11182&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
## 题目链接
[牛客网](https://www.nowcoder.com/practice/6a296eb82cf844ca8539b57c23e6e9bf?tpId=13&tqId=11182&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
## 解题思路
### 大小为 K 的最小堆
- 复杂度O(NlogK) + O(K)
- 特别适合处理海量数据
维护一个大小为 K 的最小堆过程如下使用大顶堆在添加一个元素之后如果大顶堆的大小大于 K那么将大顶堆的堆顶元素去除也就是将当前堆中值最大的元素去除从而使得留在堆中的元素都比被去除的元素来得小
应该使用大顶堆来维护最小堆而不能直接创建一个小顶堆并设置一个大小企图让小顶堆中的元素都是最小元素
Java PriorityQueue 实现了堆的能力PriorityQueue 默认是小顶堆可以在在初始化时使用 Lambda 表达式 (o1, o2) -> o2 - o1 来实现大顶堆其它语言也有类似的堆数据结构
```java
public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k) {
if (k > nums.length || k <= 0)
return new ArrayList<>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> o2 - o1);
for (int num : nums) {
maxHeap.add(num);
if (maxHeap.size() > k)
maxHeap.poll();
}
return new ArrayList<>(maxHeap);
}
```
### 快速选择
- 复杂度O(N) + O(1)
@ -57,29 +84,6 @@ private void swap(int[] nums, int i, int j) {
}
```
### 大小为 K 的最小堆
- 复杂度O(NlogK) + O(K)
- 特别适合处理海量数据
应该使用大顶堆来维护最小堆而不能直接创建一个小顶堆并设置一个大小企图让小顶堆中的元素都是最小元素
维护一个大小为 K 的最小堆过程如下在添加一个元素之后如果大顶堆的大小大于 K那么需要将大顶堆的堆顶元素去除
```java
public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k) {
if (k > nums.length || k <= 0)
return new ArrayList<>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> o2 - o1);
for (int num : nums) {
maxHeap.add(num);
if (maxHeap.size() > k)
maxHeap.poll();
}
return new ArrayList<>(maxHeap);
}
```