59 lines
1.3 KiB
Java
59 lines
1.3 KiB
Java
|
# 10.4 变态跳台阶
|
|||
|
|
|||
|
[NowCoder](https://www.nowcoder.com/practice/22243d016f6b47f2a6928b4313c85387?tpId=13&tqId=11162&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
|
|||
|
|
|||
|
## 题目描述
|
|||
|
|
|||
|
一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级... 它也可以跳上 n 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
|
|||
|
|
|||
|
<img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/cd411a94-3786-4c94-9e08-f28320e010d5.png" width="380px">
|
|||
|
|
|||
|
## 解题思路
|
|||
|
|
|||
|
### 动态规划
|
|||
|
|
|||
|
```java
|
|||
|
public int JumpFloorII(int target) {
|
|||
|
int[] dp = new int[target];
|
|||
|
Arrays.fill(dp, 1);
|
|||
|
for (int i = 1; i < target; i++)
|
|||
|
for (int j = 0; j < i; j++)
|
|||
|
dp[i] += dp[j];
|
|||
|
return dp[target - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
### 数学推导
|
|||
|
|
|||
|
跳上 n-1 级台阶,可以从 n-2 级跳 1 级上去,也可以从 n-3 级跳 2 级上去...,那么
|
|||
|
|
|||
|
```
|
|||
|
f(n-1) = f(n-2) + f(n-3) + ... + f(0)
|
|||
|
```
|
|||
|
|
|||
|
同样,跳上 n 级台阶,可以从 n-1 级跳 1 级上去,也可以从 n-2 级跳 2 级上去... ,那么
|
|||
|
|
|||
|
```
|
|||
|
f(n) = f(n-1) + f(n-2) + ... + f(0)
|
|||
|
```
|
|||
|
|
|||
|
综上可得
|
|||
|
|
|||
|
```
|
|||
|
f(n) - f(n-1) = f(n-1)
|
|||
|
```
|
|||
|
|
|||
|
即
|
|||
|
|
|||
|
```
|
|||
|
f(n) = 2*f(n-1)
|
|||
|
```
|
|||
|
|
|||
|
所以 f(n) 是一个等比数列
|
|||
|
|
|||
|
```source-java
|
|||
|
public int JumpFloorII(int target) {
|
|||
|
return (int) Math.pow(2, target - 1);
|
|||
|
}
|
|||
|
```
|