CS-Notes/notes/Java 基础.md

1449 lines
46 KiB
Java
Raw Normal View History

2019-04-25 18:24:51 +08:00
<!-- GFM-TOC -->
* [数据类型](#一数据类型)
* [基本类型](#基本类型)
* [包装类型](#包装类型)
* [缓存池](#缓存池)
* [String](#二string)
* [概览](#概览)
* [不可变的好处](#不可变的好处)
* [String, StringBuffer and StringBuilder](#string,-stringbuffer-and-stringbuilder)
* [String Pool](#string-pool)
* [new String("abc")](#new-string"abc")
* [运算](#三运算)
* [参数传递](#参数传递)
* [float double](#float--double)
* [隐式类型转换](#隐式类型转换)
* [switch](#switch)
2019-12-10 01:28:00 +08:00
* [关键字](#四关键字)
* [final](#final)
* [static](#static)
2019-04-25 18:24:51 +08:00
* [Object 通用方法](#五object-通用方法)
* [概览](#概览)
* [equals()](#equals)
* [hashCode()](#hashcode)
* [toString()](#tostring)
* [clone()](#clone)
2019-12-10 01:28:00 +08:00
* [继承](#六继承)
* [访问权限](#访问权限)
* [抽象类与接口](#抽象类与接口)
* [super](#super)
* [重写与重载](#重写与重载)
2019-04-25 18:24:51 +08:00
* [反射](#七反射)
* [异常](#八异常)
* [泛型](#九泛型)
* [注解](#十注解)
* [十一特性](#十一特性)
* [Java 各版本的新特性](#java-各版本的新特性)
* [Java C++ 的区别](#java--c-的区别)
* [JRE or JDK](#jre-or-jdk)
* [参考资料](#参考资料)
<!-- GFM-TOC -->
# 数据类型
## 基本类型
- byte/8
- char/16
- short/16
- int/32
- float/32
- long/64
- double/64
- boolean/\~
boolean 只有两个值truefalse可以使用 1 bit 来存储但是具体大小没有明确规定JVM 会在编译时期将 boolean 类型的数据转换为 int使用 1 来表示 true0 表示 falseJVM 支持 boolean 数组但是是通过读写 byte 数组来实现的
- [Primitive Data Types](https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html)
- [The Java® Virtual Machine Specification](https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf)
## 包装类型
基本类型都有对应的包装类型基本类型与其对应的包装类型之间的赋值使用自动装箱与拆箱完成
```java
2019-08-11 23:10:46 +08:00
Integer x = 2; // 装箱 调用了 Integer.valueOf(2)
2019-08-19 00:35:12 +08:00
int y = x; // 拆箱 调用了 X.intValue()
2019-04-25 18:24:51 +08:00
```
2019-08-19 00:35:12 +08:00
- [Autoboxing and Unboxing](https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html)
2019-04-25 18:24:51 +08:00
## 缓存池
new Integer(123) Integer.valueOf(123) 的区别在于
- new Integer(123) 每次都会新建一个对象
- Integer.valueOf(123) 会使用缓存池中的对象多次调用会取得同一个对象的引用
```java
Integer x = new Integer(123);
Integer y = new Integer(123);
System.out.println(x == y); // false
Integer z = Integer.valueOf(123);
Integer k = Integer.valueOf(123);
System.out.println(z == k); // true
```
valueOf() 方法的实现比较简单就是先判断值是否在缓存池中如果在的话就直接返回缓存池的内容
```java
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
```
Java 8 Integer 缓存池的大小默认为 -128\~127
```java
static final int low = -128;
static final int high;
static final Integer cache[];
static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
try {
int i = parseInt(integerCacheHighPropValue);
i = Math.max(i, 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
} catch( NumberFormatException nfe) {
// If the property cannot be parsed into an int, ignore it.
}
}
high = h;
cache = new Integer[(high - low) + 1];
int j = low;
for(int k = 0; k < cache.length; k++)
cache[k] = new Integer(j++);
// range [-128, 127] must be interned (JLS7 5.1.7)
assert IntegerCache.high >= 127;
}
```
编译器会在自动装箱过程调用 valueOf() 方法因此多个值相同且值在缓存池范围内的 Integer 实例使用自动装箱来创建那么就会引用相同的对象
```java
Integer m = 123;
Integer n = 123;
System.out.println(m == n); // true
```
基本类型对应的缓冲池如下
2019-05-08 11:31:46 +08:00
- boolean values true and false
- all byte values
- short values between -128 and 127
- int values between -128 and 127
- char in the range \u0000 to \u007F
2019-04-25 18:24:51 +08:00
2019-05-08 11:08:48 +08:00
在使用这些基本类型对应的包装类型时如果该数值范围在缓冲池范围内就可以直接使用缓冲池中的对象
jdk 1.8 所有的数值类缓冲池中Integer 的缓冲池 IntegerCache 很特殊这个缓冲池的下界是 - 128上界默认是 127但是这个上界是可调的在启动 jvm 的时候通过 -XX:AutoBoxCacheMax=&lt;size&gt; 来指定这个缓冲池的大小该选项在 JVM 初始化的时候会设定一个名为 java.lang.IntegerCache.high 系统属性然后 IntegerCache 初始化的时候就会读取该系统属性来决定上界
2019-04-25 18:24:51 +08:00
[StackOverflow : Differences between new Integer(123), Integer.valueOf(123) and just 123
](https://stackoverflow.com/questions/9030817/differences-between-new-integer123-integer-valueof123-and-just-123)
# String
## 概览
2019-08-11 23:10:46 +08:00
String 被声明为 final因此它不可被继承(Integer 等包装类也不能被继承
2019-04-25 18:24:51 +08:00
Java 8 String 内部使用 char 数组存储数据
```java
public final class String
implements java.io.Serializable, Comparable<String>, CharSequence {
/** The value is used for character storage. */
private final char value[];
}
```
Java 9 之后String 类的实现改用 byte 数组存储字符串同时使用 `coder` 来标识使用了哪种编码
```java
public final class String
implements java.io.Serializable, Comparable<String>, CharSequence {
/** The value is used for character storage. */
private final byte[] value;
/** The identifier of the encoding used to encode the bytes in {@code value}. */
private final byte coder;
}
```
value 数组被声明为 final这意味着 value 数组初始化之后就不能再引用其它数组并且 String 内部没有改变 value 数组的方法因此可以保证 String 不可变
## 不可变的好处
2019-11-02 12:07:41 +08:00
**1. 可以缓存 hash **
2019-04-25 18:24:51 +08:00
因为 String hash 值经常被使用例如 String 用做 HashMap key不可变的特性可以使得 hash 值也不可变因此只需要进行一次计算
2019-11-02 12:07:41 +08:00
**2. String Pool 的需要**
2019-04-25 18:24:51 +08:00
如果一个 String 对象已经被创建过了那么就会从 String Pool 中取得引用只有 String 是不可变的才可能使用 String Pool
2019-12-10 00:56:31 +08:00
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/image-20191210004132894.png"/> </div><br>
2019-04-25 18:24:51 +08:00
2019-11-02 12:07:41 +08:00
**3. 安全性**
2019-04-25 18:24:51 +08:00
2019-12-10 00:56:31 +08:00
String 经常作为参数String 不可变性可以保证参数不可变例如在作为网络连接参数的情况下如果 String 是可变的那么在网络连接过程中String 被改变改变 String 的那一方以为现在连接的是其它主机而实际情况却不一定是
2019-04-25 18:24:51 +08:00
2019-11-02 12:07:41 +08:00
**4. 线程安全**
2019-04-25 18:24:51 +08:00
String 不可变性天生具备线程安全可以在多个线程中安全地使用
[Program Creek : Why String is immutable in Java?](https://www.programcreek.com/2013/04/why-string-is-immutable-in-java/)
## String, StringBuffer and StringBuilder
2019-11-02 12:07:41 +08:00
**1. 可变性**
2019-04-25 18:24:51 +08:00
- String 不可变
- StringBuffer StringBuilder 可变
2019-11-02 12:07:41 +08:00
**2. 线程安全**
2019-04-25 18:24:51 +08:00
- String 不可变因此是线程安全的
- StringBuilder 不是线程安全的
- StringBuffer 是线程安全的内部使用 synchronized 进行同步
[StackOverflow : String, StringBuffer, and StringBuilder](https://stackoverflow.com/questions/2971315/string-stringbuffer-and-stringbuilder)
## String Pool
2019-12-10 00:56:31 +08:00
字符串常量池String Pool保存着所有字符串字面量literal strings这些字面量在编译时期就确定不仅如此还可以使用 String intern() 方法在运行过程将字符串添加到 String Pool
2019-04-25 18:24:51 +08:00
当一个字符串调用 intern() 方法时如果 String Pool 中已经存在一个字符串和该字符串值相等使用 equals() 方法进行确定那么就会返回 String Pool 中字符串的引用否则就会在 String Pool 中添加一个新的字符串并返回这个新字符串的引用
2019-12-10 00:56:31 +08:00
下面示例中s1 s2 采用 new String() 的方式新建了两个不同字符串 s3 s4 是通过 s1.intern() 方法取得同一个字符串引用intern() 首先把 s1 引用的字符串放到 String Pool 然后返回这个字符串引用因此 s3 s4 引用的是同一个字符串
2019-04-25 18:24:51 +08:00
```java
String s1 = new String("aaa");
String s2 = new String("aaa");
System.out.println(s1 == s2); // false
String s3 = s1.intern();
String s4 = s1.intern();
System.out.println(s3 == s4); // true
```
如果是采用 "bbb" 这种字面量的形式创建字符串会自动地将字符串放入 String Pool
```java
String s5 = "bbb";
String s6 = "bbb";
System.out.println(s5 == s6); // true
```
Java 7 之前String Pool 被放在运行时常量池中它属于永久代而在 Java 7String Pool 被移到堆中这是因为永久代的空间有限在大量使用字符串的场景下会导致 OutOfMemoryError 错误
- [StackOverflow : What is String interning?](https://stackoverflow.com/questions/10578984/what-is-string-interning)
- [深入解析 String#intern](https://tech.meituan.com/in_depth_understanding_string_intern.html)
## new String("abc")
使用这种方式一共会创建两个字符串对象前提是 String Pool 中还没有 "abc" 字符串对象
- "abc" 属于字符串字面量因此编译时期会在 String Pool 中创建一个字符串对象指向这个 "abc" 字符串字面量
- 而使用 new 的方式会在堆中创建一个字符串对象
创建一个测试类 main 方法中使用这种方式来创建字符串对象
```java
public class NewStringTest {
public static void main(String[] args) {
String s = new String("abc");
}
}
```
使用 javap -verbose 进行反编译得到以下内容
```java
// ...
Constant pool:
// ...
#2 = Class #18 // java/lang/String
#3 = String #19 // abc
// ...
#18 = Utf8 java/lang/String
#19 = Utf8 abc
// ...
public static void main(java.lang.String[]);
descriptor: ([Ljava/lang/String;)V
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=3, locals=2, args_size=1
0: new #2 // class java/lang/String
3: dup
4: ldc #3 // String abc
6: invokespecial #4 // Method java/lang/String."<init>":(Ljava/lang/String;)V
9: astore_1
// ...
```
Constant Pool #19 存储这字符串字面量 "abc"#3 String Pool 的字符串对象它指向 #19 这个字符串字面量 main 方法中0: 行使用 new #2 在堆中创建一个字符串对象并且使用 ldc #3 String Pool 中的字符串对象作为 String 构造函数的参数
以下是 String 构造函数的源码可以看到在将一个字符串对象作为另一个字符串对象的构造函数参数时并不会完全复制 value 数组内容而是都会指向同一个 value 数组
```java
public String(String original) {
this.value = original.value;
this.hash = original.hash;
}
```
# 运算
## 参数传递
Java 的参数是以值传递的形式传入方法中而不是引用传递
2019-12-10 00:56:31 +08:00
以下代码中 Dog dog dog 是一个指针存储的是对象的地址在将一个参数传入一个方法时本质上是将对象的地址以值的方式传递到形参中
2019-04-25 18:24:51 +08:00
```java
public class Dog {
String name;
Dog(String name) {
this.name = name;
}
String getName() {
return this.name;
}
void setName(String name) {
this.name = name;
}
String getObjectAddress() {
return super.toString();
}
}
```
2019-12-10 00:56:31 +08:00
在方法中改变对象的字段值会改变原对象该字段值因为引用的是同一个对象
2019-04-25 18:24:51 +08:00
```java
2019-12-10 00:56:31 +08:00
class PassByValueExample {
2019-04-25 18:24:51 +08:00
public static void main(String[] args) {
Dog dog = new Dog("A");
func(dog);
2019-12-10 00:56:31 +08:00
System.out.println(dog.getName()); // B
2019-04-25 18:24:51 +08:00
}
private static void func(Dog dog) {
2019-12-10 00:56:31 +08:00
dog.setName("B");
2019-04-25 18:24:51 +08:00
}
}
```
2019-12-10 00:56:31 +08:00
但是在方法中将指针引用了其它对象那么此时方法里和方法外的两个指针指向了不同的对象在一个指针改变其所指向对象的内容对另一个指针所指向的对象没有影响
2019-04-25 18:24:51 +08:00
```java
2019-12-10 00:56:31 +08:00
public class PassByValueExample {
2019-04-25 18:24:51 +08:00
public static void main(String[] args) {
Dog dog = new Dog("A");
2019-12-10 00:56:31 +08:00
System.out.println(dog.getObjectAddress()); // Dog@4554617c
2019-04-25 18:24:51 +08:00
func(dog);
2019-12-10 00:56:31 +08:00
System.out.println(dog.getObjectAddress()); // Dog@4554617c
System.out.println(dog.getName()); // A
2019-04-25 18:24:51 +08:00
}
private static void func(Dog dog) {
2019-12-10 00:56:31 +08:00
System.out.println(dog.getObjectAddress()); // Dog@4554617c
dog = new Dog("B");
System.out.println(dog.getObjectAddress()); // Dog@74a14482
System.out.println(dog.getName()); // B
2019-04-25 18:24:51 +08:00
}
}
```
[StackOverflow: Is Java pass-by-reference or pass-by-value?](https://stackoverflow.com/questions/40480/is-java-pass-by-reference-or-pass-by-value)
## float double
Java 不能隐式执行向下转型因为这会使得精度降低
1.1 字面量属于 double 类型不能直接将 1.1 直接赋值给 float 变量因为这是向下转型
```java
// float f = 1.1;
```
1.1f 字面量才是 float 类型
```java
float f = 1.1f;
```
## 隐式类型转换
2019-12-10 00:56:31 +08:00
因为字面量 1 int 类型它比 short 类型精度要高因此不能隐式地将 int 类型向下转型为 short 类型
2019-04-25 18:24:51 +08:00
```java
short s1 = 1;
// s1 = s1 + 1;
```
2019-12-10 00:56:31 +08:00
但是使用 += 或者 ++ 运算符会执行隐式类型转换
2019-04-25 18:24:51 +08:00
```java
s1 += 1;
2019-12-10 00:56:31 +08:00
s1++;
2019-04-25 18:24:51 +08:00
```
上面的语句相当于将 s1 + 1 的计算结果进行了向下转型
```java
s1 = (short) (s1 + 1);
```
[StackOverflow : Why don't Java's +=, -=, *=, /= compound assignment operators require casting?](https://stackoverflow.com/questions/8710619/why-dont-javas-compound-assignment-operators-require-casting)
## switch
Java 7 开始可以在 switch 条件判断语句中使用 String 对象
```java
String s = "a";
switch (s) {
case "a":
System.out.println("aaa");
break;
case "b":
System.out.println("bbb");
break;
}
```
2019-12-10 00:56:31 +08:00
switch 不支持 long是因为 switch 的设计初衷是对那些只有少数几个值的类型进行等值判断如果值过于复杂那么还是用 if 比较合适
2019-04-25 18:24:51 +08:00
```java
// long x = 111;
// switch (x) { // Incompatible types. Found: 'long', required: 'char, byte, short, int, Character, Byte, Short, Integer, String, or an enum'
// case 111:
// System.out.println(111);
// break;
// case 222:
// System.out.println(222);
// break;
// }
```
[StackOverflow : Why can't your switch statement data type be long, Java?](https://stackoverflow.com/questions/2676210/why-cant-your-switch-statement-data-type-be-long-java)
2019-12-10 01:28:00 +08:00
# 关键字
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
## final
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**1. 数据**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
声明数据为常量可以是编译时常量也可以是在运行时被初始化后不能被改变的常量
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
- 对于基本类型final 使数值不变
- 对于引用类型final 使引用不变也就不能引用其它对象但是被引用的对象本身是可以修改的
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
```java
final int x = 1;
// x = 2; // cannot assign value to final variable 'x'
final A y = new A();
y.a = 1;
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**2. 方法**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
声明方法不能被子类重写
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
private 方法隐式地被指定为 final如果在子类中定义的方法和基类中的一个 private 方法签名相同此时子类的方法不是重写基类方法而是在子类中定义了一个新的方法
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**3. **
声明类不允许被继承
## static
**1. 静态变量**
- 静态变量又称为类变量也就是说这个变量属于类的类所有的实例都共享静态变量可以直接通过类名来访问它静态变量在内存中只存在一份
- 实例变量每创建一个实例就会产生一个实例变量它与该实例同生共死
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public class A {
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
private int x; // 实例变量
private static int y; // 静态变量
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public static void main(String[] args) {
// int x = A.x; // Non-static field 'x' cannot be referenced from a static context
A a = new A();
int x = a.x;
int y = A.y;
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
}
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**2. 静态方法**
静态方法在类加载的时候就存在了它不依赖于任何实例所以静态方法必须有实现也就是说它不能是抽象方法
```java
public abstract class A {
public static void func1(){
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
// public abstract static void func2(); // Illegal combination of modifiers: 'abstract' and 'static'
2019-04-25 18:24:51 +08:00
}
```
2019-12-10 01:28:00 +08:00
只能访问所属类的静态字段和静态方法方法中不能有 this super 关键字因此这两个关键字与具体对象关联
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public class A {
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
private static int x;
private int y;
public static void func1(){
int a = x;
// int b = y; // Non-static field 'y' cannot be referenced from a static context
// int b = this.y; // 'A.this' cannot be referenced from a static context
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
}
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**3. 静态语句块**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
静态语句块在类初始化时运行一次
```java
public class A {
static {
System.out.println("123");
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
public static void main(String[] args) {
A a1 = new A();
A a2 = new A();
2019-04-25 18:24:51 +08:00
}
}
```
2019-12-10 01:28:00 +08:00
```html
123
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**4. 静态内部类**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
非静态内部类依赖于外部类的实例也就是说需要先创建外部类实例才能用这个实例去创建非静态内部类而静态内部类不需要
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public class OuterClass {
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
class InnerClass {
}
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
static class StaticInnerClass {
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
public static void main(String[] args) {
// InnerClass innerClass = new InnerClass(); // 'OuterClass.this' cannot be referenced from a static context
OuterClass outerClass = new OuterClass();
InnerClass innerClass = outerClass.new InnerClass();
StaticInnerClass staticInnerClass = new StaticInnerClass();
2019-04-25 18:24:51 +08:00
}
}
```
2019-12-10 01:28:00 +08:00
静态内部类不能访问外部类的非静态的变量和方法
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**5. 静态导包**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
在使用静态变量和方法时不用再指明 ClassName从而简化代码但可读性大大降低
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
```java
import static com.xxx.ClassName.*
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**6. 初始化顺序**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
静态变量和静态语句块优先于实例变量和普通语句块静态变量和静态语句块的初始化顺序取决于它们在代码中的顺序
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public static String staticField = "静态变量";
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
```java
static {
System.out.println("静态语句块");
2019-04-25 18:24:51 +08:00
}
```
```java
2019-12-10 01:28:00 +08:00
public String field = "实例变量";
```
```java
{
System.out.println("普通语句块");
2019-04-25 18:24:51 +08:00
}
```
2019-12-10 01:28:00 +08:00
最后才是构造函数的初始化
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public InitialOrderTest() {
System.out.println("构造函数");
}
2019-04-25 18:24:51 +08:00
```
2019-12-10 01:28:00 +08:00
存在继承的情况下初始化顺序为
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
- 父类静态变量静态语句块
- 子类静态变量静态语句块
- 父类实例变量普通语句块
- 父类构造函数
- 子类实例变量普通语句块
- 子类构造函数
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
# Object 通用方法
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
## 概览
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
```java
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public native int hashCode()
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public boolean equals(Object obj)
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
protected native Object clone() throws CloneNotSupportedException
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public String toString()
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public final native Class<?> getClass()
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
protected void finalize() throws Throwable {}
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public final native void notify()
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public final native void notifyAll()
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public final native void wait(long timeout) throws InterruptedException
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public final void wait(long timeout, int nanos) throws InterruptedException
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public final void wait() throws InterruptedException
2019-04-25 18:24:51 +08:00
```
2019-12-10 01:28:00 +08:00
## equals()
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**1. 等价关系**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
两个对象具有等价关系需要满足以下五个条件
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
自反性
2019-04-25 18:24:51 +08:00
```java
x.equals(x); // true
```
对称性
```java
x.equals(y) == y.equals(x); // true
```
传递性
```java
if (x.equals(y) && y.equals(z))
x.equals(z); // true;
```
一致性
多次调用 equals() 方法结果不变
```java
x.equals(y) == x.equals(y); // true
```
null 的比较
对任何不是 null 的对象 x 调用 x.equals(null) 结果都为 false
```java
x.equals(null); // false;
```
2019-11-02 12:07:41 +08:00
**2. 等价与相等**
2019-04-25 18:24:51 +08:00
- 对于基本类型== 判断两个值是否相等基本类型没有 equals() 方法
- 对于引用类型== 判断两个变量是否引用同一个对象 equals() 判断引用的对象是否等价
```java
Integer x = new Integer(1);
Integer y = new Integer(1);
System.out.println(x.equals(y)); // true
System.out.println(x == y); // false
```
2019-11-02 12:07:41 +08:00
**3. 实现**
2019-04-25 18:24:51 +08:00
- 检查是否为同一个对象的引用如果是直接返回 true
- 检查是否是同一个类型如果不是直接返回 false
- Object 对象进行转型
- 判断每个关键域是否相等
```java
public class EqualExample {
private int x;
private int y;
private int z;
public EqualExample(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
EqualExample that = (EqualExample) o;
if (x != that.x) return false;
if (y != that.y) return false;
return z == that.z;
}
}
```
## hashCode()
2019-12-10 01:28:00 +08:00
hashCode() 返回哈希值 equals() 是用来判断两个对象是否等价等价的两个对象散列值一定相同但是散列值相同的两个对象不一定等价这是因为计算哈希值具有随机性两个值不同的对象可能计算出相同的哈希值
在覆盖 equals() 方法时应当总是覆盖 hashCode() 方法保证等价的两个对象哈希值也相等
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
HashSet HashMap 等集合类使用了 hashCode() 方法来计算对象应该存储的位置因此要将对象添加到这些集合类中需要让对应的类实现 hashCode() 方法
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
下面的代码中新建了两个等价的对象并将它们添加到 HashSet 我们希望将这两个对象当成一样的只在集合中添加一个对象但是 EqualExample 没有实现 hashCode() 方法因此这两个对象的哈希值是不同的最终导致集合添加了两个等价的对象
2019-04-25 18:24:51 +08:00
```java
EqualExample e1 = new EqualExample(1, 1, 1);
EqualExample e2 = new EqualExample(1, 1, 1);
System.out.println(e1.equals(e2)); // true
HashSet<EqualExample> set = new HashSet<>();
set.add(e1);
set.add(e2);
System.out.println(set.size()); // 2
```
2019-12-10 01:28:00 +08:00
理想的哈希函数应当具有均匀性即不相等的对象应当均匀分布到所有可能的哈希值上这就要求了哈希函数要把所有域的值都考虑进来可以将每个域都当成 R 进制的某一位然后组成一个 R 进制的整数
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
R 一般取 31因为它是一个奇素数如果是偶数的话当出现乘法溢出信息就会丢失因为与 2 相乘相当于向左移一位最左边的位丢失并且一个数与 31 相乘可以转换成移位和减法`31*x == (x<<5)-x`编译器会自动进行这个优化
2019-04-25 18:24:51 +08:00
```java
@Override
public int hashCode() {
int result = 17;
result = 31 * result + x;
result = 31 * result + y;
result = 31 * result + z;
return result;
}
```
## toString()
默认返回 ToStringExample@4554617c 这种形式其中 @ 后面的数值为散列码的无符号十六进制表示
```java
public class ToStringExample {
private int number;
public ToStringExample(int number) {
this.number = number;
}
}
```
```java
ToStringExample example = new ToStringExample(123);
System.out.println(example.toString());
```
```html
ToStringExample@4554617c
```
## clone()
2019-11-02 12:07:41 +08:00
**1. cloneable**
2019-04-25 18:24:51 +08:00
clone() Object protected 方法它不是 public一个类不显式去重写 clone()其它类就不能直接去调用该类实例的 clone() 方法
```java
public class CloneExample {
private int a;
private int b;
}
```
```java
CloneExample e1 = new CloneExample();
// CloneExample e2 = e1.clone(); // 'clone()' has protected access in 'java.lang.Object'
```
重写 clone() 得到以下实现
```java
public class CloneExample {
private int a;
private int b;
@Override
public CloneExample clone() throws CloneNotSupportedException {
return (CloneExample)super.clone();
}
}
```
```java
CloneExample e1 = new CloneExample();
try {
CloneExample e2 = e1.clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();
}
```
```html
java.lang.CloneNotSupportedException: CloneExample
```
以上抛出了 CloneNotSupportedException这是因为 CloneExample 没有实现 Cloneable 接口
应该注意的是clone() 方法并不是 Cloneable 接口的方法而是 Object 的一个 protected 方法Cloneable 接口只是规定如果一个类没有实现 Cloneable 接口又调用了 clone() 方法就会抛出 CloneNotSupportedException
```java
public class CloneExample implements Cloneable {
private int a;
private int b;
@Override
public Object clone() throws CloneNotSupportedException {
return super.clone();
}
}
```
2019-11-02 12:07:41 +08:00
**2. 浅拷贝**
2019-04-25 18:24:51 +08:00
拷贝对象和原始对象的引用类型引用同一个对象
```java
public class ShallowCloneExample implements Cloneable {
private int[] arr;
public ShallowCloneExample() {
arr = new int[10];
for (int i = 0; i < arr.length; i++) {
arr[i] = i;
}
}
public void set(int index, int value) {
arr[index] = value;
}
public int get(int index) {
return arr[index];
}
@Override
protected ShallowCloneExample clone() throws CloneNotSupportedException {
return (ShallowCloneExample) super.clone();
}
}
```
```java
ShallowCloneExample e1 = new ShallowCloneExample();
ShallowCloneExample e2 = null;
try {
e2 = e1.clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();
}
e1.set(2, 222);
System.out.println(e2.get(2)); // 222
```
2019-11-02 12:07:41 +08:00
**3. 深拷贝**
2019-04-25 18:24:51 +08:00
拷贝对象和原始对象的引用类型引用不同对象
```java
public class DeepCloneExample implements Cloneable {
private int[] arr;
public DeepCloneExample() {
arr = new int[10];
for (int i = 0; i < arr.length; i++) {
arr[i] = i;
}
}
public void set(int index, int value) {
arr[index] = value;
}
public int get(int index) {
return arr[index];
}
@Override
protected DeepCloneExample clone() throws CloneNotSupportedException {
DeepCloneExample result = (DeepCloneExample) super.clone();
result.arr = new int[arr.length];
for (int i = 0; i < arr.length; i++) {
result.arr[i] = arr[i];
}
return result;
}
}
```
```java
DeepCloneExample e1 = new DeepCloneExample();
DeepCloneExample e2 = null;
try {
e2 = e1.clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();
}
e1.set(2, 222);
System.out.println(e2.get(2)); // 2
```
2019-11-02 12:07:41 +08:00
**4. clone() 的替代方案**
2019-04-25 18:24:51 +08:00
使用 clone() 方法来拷贝一个对象即复杂又有风险它会抛出异常并且还需要类型转换Effective Java 书上讲到最好不要去使用 clone()可以使用拷贝构造函数或者拷贝工厂来拷贝一个对象
```java
public class CloneConstructorExample {
private int[] arr;
public CloneConstructorExample() {
arr = new int[10];
for (int i = 0; i < arr.length; i++) {
arr[i] = i;
}
}
public CloneConstructorExample(CloneConstructorExample original) {
arr = new int[original.arr.length];
for (int i = 0; i < original.arr.length; i++) {
arr[i] = original.arr[i];
}
}
public void set(int index, int value) {
arr[index] = value;
}
public int get(int index) {
return arr[index];
}
}
```
```java
CloneConstructorExample e1 = new CloneConstructorExample();
CloneConstructorExample e2 = new CloneConstructorExample(e1);
e1.set(2, 222);
System.out.println(e2.get(2)); // 2
```
2019-12-10 01:28:00 +08:00
# 继承
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
## 访问权限
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
Java 中有三个访问权限修饰符privateprotected 以及 public如果不加访问修饰符表示包级可见
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
可以对类或类中的成员字段和方法加上访问修饰符
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
- 类可见表示其它类可以用这个类创建实例对象
- 成员可见表示其它类可以用这个类的实例对象访问到该成员
protected 用于修饰成员表示在继承体系中成员对于子类可见但是这个访问修饰符对于类没有意义
设计良好的模块会隐藏所有的实现细节把它的 API 与它的实现清晰地隔离开来模块之间只通过它们的 API 进行通信一个模块不需要知道其他模块的内部工作情况这个概念被称为信息隐藏或封装因此访问权限应当尽可能地使每个类或者成员不被外界访问
如果子类的方法重写了父类的方法那么子类中该方法的访问级别不允许低于父类的访问级别这是为了确保可以使用父类实例的地方都可以使用子类实例去代替也就是确保满足里氏替换原则
字段决不能是公有的因为这么做的话就失去了对这个字段修改行为的控制客户端可以对其随意修改例如下面的例子中AccessExample 拥有 id 公有字段如果在某个时刻我们想要使用 int 存储 id 字段那么就需要修改所有的客户端代码
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public class AccessExample {
public String id;
}
2019-04-25 18:24:51 +08:00
```
2019-12-10 01:28:00 +08:00
可以使用公有的 getter setter 方法来替换公有字段这样的话就可以控制对字段的修改行为
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
```java
public class AccessExample {
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
private int id;
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public String getId() {
return id + "";
}
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public void setId(String id) {
this.id = Integer.valueOf(id);
}
}
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
但是也有例外如果是包级私有的类或者私有的嵌套类那么直接暴露成员不会有特别大的影响
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
```java
public class AccessWithInnerClassExample {
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
private class InnerClass {
int x;
}
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
private InnerClass innerClass;
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public AccessWithInnerClassExample() {
innerClass = new InnerClass();
}
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public int getValue() {
return innerClass.x; // 直接访问
2019-04-25 18:24:51 +08:00
}
}
```
2019-12-10 01:28:00 +08:00
## 抽象类与接口
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
**1. 抽象类**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
抽象类和抽象方法都使用 abstract 关键字进行声明如果一个类中包含抽象方法那么这个类必须声明为抽象类
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
抽象类和普通类最大的区别是抽象类不能被实例化只能被继承
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public abstract class AbstractClassExample {
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
protected int x;
2019-04-25 18:24:51 +08:00
private int y;
2019-12-10 01:28:00 +08:00
public abstract void func1();
public void func2() {
System.out.println("func2");
2019-04-25 18:24:51 +08:00
}
}
```
2019-12-10 01:28:00 +08:00
```java
public class AbstractExtendClassExample extends AbstractClassExample {
@Override
public void func1() {
System.out.println("func1");
}
}
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
```java
// AbstractClassExample ac1 = new AbstractClassExample(); // 'AbstractClassExample' is abstract; cannot be instantiated
AbstractClassExample ac2 = new AbstractExtendClassExample();
ac2.func1();
```
**2. 接口**
接口是抽象类的延伸 Java 8 之前它可以看成是一个完全抽象的类也就是说它不能有任何的方法实现
Java 8 开始接口也可以拥有默认的方法实现这是因为不支持默认方法的接口的维护成本太高了 Java 8 之前如果一个接口想要添加新的方法那么要修改所有实现了该接口的类让它们都实现新增的方法
接口的成员字段 + 方法默认都是 public 并且不允许定义为 private 或者 protected
接口的字段默认都是 static final
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public interface InterfaceExample {
void func1();
default void func2(){
System.out.println("func2");
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
int x = 123;
// int y; // Variable 'y' might not have been initialized
public int z = 0; // Modifier 'public' is redundant for interface fields
// private int k = 0; // Modifier 'private' not allowed here
// protected int l = 0; // Modifier 'protected' not allowed here
// private void fun3(); // Modifier 'private' not allowed here
}
```
```java
public class InterfaceImplementExample implements InterfaceExample {
@Override
public void func1() {
System.out.println("func1");
2019-04-25 18:24:51 +08:00
}
}
```
2019-12-10 01:28:00 +08:00
```java
// InterfaceExample ie1 = new InterfaceExample(); // 'InterfaceExample' is abstract; cannot be instantiated
InterfaceExample ie2 = new InterfaceImplementExample();
ie2.func1();
System.out.println(InterfaceExample.x);
2019-04-25 18:24:51 +08:00
```
2019-12-10 01:28:00 +08:00
**3. 比较**
- 从设计层面上看抽象类提供了一种 IS-A 关系需要满足里式替换原则即子类对象必须能够替换掉所有父类对象而接口更像是一种 LIKE-A 关系它只是提供一种方法实现契约并不要求接口和实现接口的类具有 IS-A 关系
- 从使用上来看一个类可以实现多个接口但是不能继承多个抽象类
- 接口的字段只能是 static final 类型的而抽象类的字段没有这种限制
- 接口的成员只能是 public 而抽象类的成员可以有多种访问权限
**4. 使用选择**
使用接口
2020-05-27 00:44:06 +08:00
- 需要让不相关的类都实现一个方法例如不相关的类都可以实现 Comparable 接口中的 compareTo() 方法
2019-12-10 01:28:00 +08:00
- 需要使用多重继承
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
使用抽象类
- 需要在几个相关的类中共享代码
- 需要能控制继承来的成员的访问权限而不是都为 public
- 需要继承非静态和非常量字段
在很多情况下接口优先于抽象类因为接口没有抽象类严格的类层次结构要求可以灵活地为一个类添加行为并且从 Java 8 开始接口也可以有默认的方法实现使得修改接口的成本也变的很低
- [Abstract Methods and Classes](https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html)
- [深入理解 abstract class interface](https://www.ibm.com/developerworks/cn/java/l-javainterface-abstract/)
- [When to Use Abstract Class and Interface](https://dzone.com/articles/when-to-use-abstract-class-and-intreface)
## super
- 访问父类的构造函数可以使用 super() 函数访问父类的构造函数从而委托父类完成一些初始化的工作应该注意到子类一定会调用父类的构造函数来完成初始化工作一般是调用父类的默认构造函数如果子类需要调用父类其它构造函数那么就可以使用 super() 函数
- 访问父类的成员如果子类重写了父类的某个方法可以通过使用 super 关键字来引用父类的方法实现
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public class SuperExample {
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
protected int x;
protected int y;
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public SuperExample(int x, int y) {
this.x = x;
this.y = y;
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
public void func() {
System.out.println("SuperExample.func()");
2019-04-25 18:24:51 +08:00
}
}
```
2019-12-10 01:28:00 +08:00
```java
public class SuperExtendExample extends SuperExample {
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
private int z;
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
public SuperExtendExample(int x, int y, int z) {
super(x, y);
this.z = z;
}
@Override
public void func() {
super.func();
System.out.println("SuperExtendExample.func()");
}
}
```
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
SuperExample e = new SuperExtendExample(1, 2, 3);
e.func();
2019-04-25 18:24:51 +08:00
```
2019-12-10 01:28:00 +08:00
```html
SuperExample.func()
SuperExtendExample.func()
```
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
[Using the Keyword super](https://docs.oracle.com/javase/tutorial/java/IandI/super.html)
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
## 重写与重载
**1. 重写Override**
存在于继承体系中指子类实现了一个与父类在方法声明上完全相同的一个方法
为了满足里式替换原则重写有以下三个限制
- 子类方法的访问权限必须大于等于父类方法
- 子类方法的返回类型必须是父类方法返回类型或为其子类型
- 子类方法抛出的异常类型必须是父类抛出异常类型或为其子类型
使用 @Override 注解可以让编译器帮忙检查是否满足上面的三个限制条件
下面的示例中SubClass SuperClass 的子类SubClass 重写了 SuperClass func() 方法其中
- 子类方法访问权限为 public大于父类的 protected
- 子类的返回类型为 ArrayList<Integer>是父类返回类型 List<Integer> 的子类
- 子类抛出的异常类型为 Exception是父类抛出异常 Throwable 的子类
- 子类重写方法使用 @Override 注解从而让编译器自动检查是否满足限制条件
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
class SuperClass {
protected List<Integer> func() throws Throwable {
return new ArrayList<>();
}
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
class SubClass extends SuperClass {
@Override
public ArrayList<Integer> func() throws Exception {
return new ArrayList<>();
}
}
2019-04-25 18:24:51 +08:00
```
2019-12-10 01:28:00 +08:00
在调用一个方法时先从本类中查找看是否有对应的方法如果没有再到父类中查看看是否从父类继承来否则就要对参数进行转型转成父类之后看是否有对应的方法总的来说方法调用的优先级为
- this.func(this)
- super.func(this)
- this.func(super)
- super.func(super)
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
/*
A
|
B
|
C
|
D
*/
class A {
public void show(A obj) {
System.out.println("A.show(A)");
}
public void show(C obj) {
System.out.println("A.show(C)");
}
2019-04-25 18:24:51 +08:00
}
2019-12-10 01:28:00 +08:00
class B extends A {
@Override
public void show(A obj) {
System.out.println("B.show(A)");
}
}
class C extends B {
}
class D extends C {
}
```
2019-04-25 18:24:51 +08:00
```java
2019-12-10 01:28:00 +08:00
public static void main(String[] args) {
A a = new A();
B b = new B();
C c = new C();
D d = new D();
// 在 A 中存在 show(A obj),直接调用
a.show(a); // A.show(A)
// 在 A 中不存在 show(B obj),将 B 转型成其父类 A
a.show(b); // A.show(A)
// 在 B 中存在从 A 继承来的 show(C obj),直接调用
b.show(c); // A.show(C)
// 在 B 中不存在 show(D obj),但是存在从 A 继承来的 show(C obj),将 D 转型成其父类 C
b.show(d); // A.show(C)
// 引用的还是 B 对象,所以 ba 和 b 的调用结果一样
A ba = new B();
ba.show(c); // A.show(C)
ba.show(d); // A.show(C)
2019-04-25 18:24:51 +08:00
}
```
2019-12-10 01:28:00 +08:00
**2. 重载Overload**
2019-04-25 18:24:51 +08:00
2019-12-10 01:28:00 +08:00
存在于同一个类中指一个方法与已经存在的方法名称上相同但是参数类型个数顺序至少有一个不同
应该注意的是返回值不同其它都相同不算是重载
2019-04-25 18:24:51 +08:00
# 反射
2019-11-02 12:07:41 +08:00
每个类都有一个 **Class** 对象包含了与类有关的信息当编译一个新类时会产生一个同名的 .class 文件该文件内容保存着 Class 对象
2019-04-25 18:24:51 +08:00
类加载相当于 Class 对象的加载类在第一次使用时才动态加载到 JVM 也可以使用 `Class.forName("com.mysql.jdbc.Driver")` 这种方式来控制类的加载该方法会返回一个 Class 对象
反射可以提供运行时的类信息并且这个类可以在运行时才加载进来甚至在编译时期该类的 .class 不存在也可以加载进来
Class java.lang.reflect 一起对反射提供了支持java.lang.reflect 类库主要包含了以下三个类
2019-11-02 12:07:41 +08:00
- **Field** 可以使用 get() set() 方法读取和修改 Field 对象关联的字段
- **Method** 可以使用 invoke() 方法调用与 Method 对象关联的方法
- **Constructor** 可以用 Constructor newInstance() 创建新的对象
2019-04-25 18:24:51 +08:00
2019-11-02 12:07:41 +08:00
**反射的优点**
2019-04-25 18:24:51 +08:00
2019-11-02 12:07:41 +08:00
* **可扩展性** 应用程序可以利用全限定名创建可扩展对象的实例来使用来自外部的用户自定义类
* **类浏览器和可视化开发环境** 一个类浏览器需要可以枚举类的成员可视化开发环境 IDE可以从利用反射中可用的类型信息中受益以帮助程序员编写正确的代码
* **调试器和测试工具** 调试器需要能够检查一个类里的私有成员测试工具可以利用反射来自动地调用类里定义的可被发现的 API 定义以确保一组测试中有较高的代码覆盖率
2019-04-25 18:24:51 +08:00
2019-11-02 12:07:41 +08:00
**反射的缺点**
2019-04-25 18:24:51 +08:00
尽管反射非常强大但也不能滥用如果一个功能可以不用反射完成那么最好就不用在我们使用反射技术时下面几条内容应该牢记于心
2019-11-02 12:07:41 +08:00
* **性能开销** 反射涉及了动态类型的解析所以 JVM 无法对这些代码进行优化因此反射操作的效率要比那些非反射操作低得多我们应该避免在经常被执行的代码或对性能要求很高的程序中使用反射
2019-04-25 18:24:51 +08:00
2019-11-02 12:07:41 +08:00
* **安全限制** 使用反射技术要求程序必须在一个没有安全限制的环境中运行如果一个程序必须在有安全限制的环境中运行 Applet那么这就是个问题了
2019-04-25 18:24:51 +08:00
2019-11-02 12:07:41 +08:00
* **内部暴露** 由于反射允许代码执行一些在正常情况下不被允许的操作比如访问私有的属性和方法所以使用反射可能会导致意料之外的副作用这可能导致代码功能失调并破坏可移植性反射代码破坏了抽象性因此当平台发生改变的时候代码的行为就有可能也随着变化
2019-04-25 18:24:51 +08:00
- [Trail: The Reflection API](https://docs.oracle.com/javase/tutorial/reflect/index.html)
- [深入解析 Java 反射1- 基础](http://www.sczyh30.com/posts/Java/java-reflection-1/)
# 异常
2019-11-02 12:07:41 +08:00
Throwable 可以用来表示任何可以作为异常抛出的类分为两种 **Error** **Exception**其中 Error 用来表示 JVM 无法处理的错误Exception 分为两种
2019-04-25 18:24:51 +08:00
2019-11-02 12:07:41 +08:00
- **受检异常** 需要用 try...catch... 语句捕获并进行处理并且可以从异常中恢复
- **非受检异常** 是程序运行时错误例如除 0 会引发 Arithmetic Exception此时程序崩溃并且无法恢复
2019-04-25 18:24:51 +08:00
2019-12-06 10:11:23 +08:00
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/PPjwP.png" width="600"/> </div><br>
2019-04-25 18:24:51 +08:00
- [Java 入门之异常处理](https://www.tianmaying.com/tutorial/Java-Exception)
- [Java 异常的面试问题及答案 -Part 1](http://www.importnew.com/7383.html)
# 泛型
```java
public class Box<T> {
// T stands for "Type"
private T t;
public void set(T t) { this.t = t; }
public T get() { return t; }
}
```
- [Java 泛型详解](http://www.importnew.com/24029.html)
- [10 Java 泛型面试题](https://cloud.tencent.com/developer/article/1033693)
# 注解
Java 注解是附加在代码中的一些元信息用于一些工具在编译运行时进行解析和使用起到说明配置的功能注解不会也不能影响代码的实际逻辑仅仅起到辅助性的作用
[注解 Annotation 实现原理与自定义注解例子](https://www.cnblogs.com/acm-bingzi/p/javaAnnotation.html)
# 十一特性
## Java 各版本的新特性
2019-11-02 12:07:41 +08:00
**New highlights in Java SE 8**
2019-04-25 18:24:51 +08:00
1. Lambda Expressions
2. Pipelines and Streams
3. Date and Time API
4. Default Methods
5. Type Annotations
6. Nashhorn JavaScript Engine
7. Concurrent Accumulators
8. Parallel operations
9. PermGen Error Removed
2019-11-02 12:07:41 +08:00
**New highlights in Java SE 7**
2019-04-25 18:24:51 +08:00
1. Strings in Switch Statement
2. Type Inference for Generic Instance Creation
3. Multiple Exception Handling
4. Support for Dynamic Languages
5. Try with Resources
6. Java nio Package
7. Binary Literals, Underscore in literals
8. Diamond Syntax
- [Difference between Java 1.8 and Java 1.7?](http://www.selfgrowth.com/articles/difference-between-java-18-and-java-17)
- [Java 8 特性](http://www.importnew.com/19345.html)
## Java C++ 的区别
- Java 是纯粹的面向对象语言所有的对象都继承自 java.lang.ObjectC++ 为了兼容 C 即支持面向对象也支持面向过程
- Java 通过虚拟机从而实现跨平台特性但是 C++ 依赖于特定的平台
- Java 没有指针它的引用可以理解为安全指针 C++ 具有和 C 一样的指针
- Java 支持自动垃圾回收 C++ 需要手动回收
- Java 不支持多重继承只能通过实现多个接口来达到相同目的 C++ 支持多重继承
- Java 不支持操作符重载虽然可以对两个 String 对象执行加法运算但是这是语言内置支持的操作不属于操作符重载 C++ 可以
- Java goto 是保留字但是不可用C++ 可以使用 goto
[What are the main differences between Java and C++?](http://cs-fundamentals.com/tech-interview/java/differences-between-java-and-cpp.php)
## JRE or JDK
2020-05-27 01:18:59 +08:00
- JREJava Runtime EnvironmentJava 运行环境的简称 Java 的运行提供了所需的环境它是一个 JVM 程序主要包括了 JVM 的标准实现和一些 Java 基本类库
- JDKJava Development KitJava 开发工具包提供了 Java 的开发及运行环境JDK Java 开发的核心集成了 JRE 以及一些其它的工具比如编译 Java 源码的编译器 javac
2019-04-25 18:24:51 +08:00
# 参考资料
- Eckel B. Java 编程思想[M]. 机械工业出版社, 2002.
- Bloch J. Effective java[M]. Addison-Wesley Professional, 2017.
2019-10-28 00:25:00 +08:00
2019-11-02 17:33:10 +08:00
<div align="center"><img width="320px" src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/githubio/公众号二维码-2.png"></img></div>