1122 lines
28 KiB
Markdown
1122 lines
28 KiB
Markdown
|
* [点击阅读面试进阶指南 ](https://github.com/CyC2018/Backend-Interview-Guide)
|
|||
|
<!-- GFM-TOC -->
|
|||
|
* [递归](#递归)
|
|||
|
* [树的高度](#树的高度)
|
|||
|
* [平衡树](#平衡树)
|
|||
|
* [两节点的最长路径](#两节点的最长路径)
|
|||
|
* [翻转树](#翻转树)
|
|||
|
* [归并两棵树](#归并两棵树)
|
|||
|
* [判断路径和是否等于一个数](#判断路径和是否等于一个数)
|
|||
|
* [统计路径和等于一个数的路径数量](#统计路径和等于一个数的路径数量)
|
|||
|
* [子树](#子树)
|
|||
|
* [树的对称](#树的对称)
|
|||
|
* [最小路径](#最小路径)
|
|||
|
* [统计左叶子节点的和](#统计左叶子节点的和)
|
|||
|
* [相同节点值的最大路径长度](#相同节点值的最大路径长度)
|
|||
|
* [间隔遍历](#间隔遍历)
|
|||
|
* [找出二叉树中第二小的节点](#找出二叉树中第二小的节点)
|
|||
|
* [层次遍历](#层次遍历)
|
|||
|
* [一棵树每层节点的平均数](#一棵树每层节点的平均数)
|
|||
|
* [得到左下角的节点](#得到左下角的节点)
|
|||
|
* [前中后序遍历](#前中后序遍历)
|
|||
|
* [非递归实现二叉树的前序遍历](#非递归实现二叉树的前序遍历)
|
|||
|
* [非递归实现二叉树的后序遍历](#非递归实现二叉树的后序遍历)
|
|||
|
* [非递归实现二叉树的中序遍历](#非递归实现二叉树的中序遍历)
|
|||
|
* [BST](#bst)
|
|||
|
* [修剪二叉查找树](#修剪二叉查找树)
|
|||
|
* [寻找二叉查找树的第 k 个元素](#寻找二叉查找树的第-k-个元素)
|
|||
|
* [把二叉查找树每个节点的值都加上比它大的节点的值](#把二叉查找树每个节点的值都加上比它大的节点的值)
|
|||
|
* [二叉查找树的最近公共祖先](#二叉查找树的最近公共祖先)
|
|||
|
* [二叉树的最近公共祖先](#二叉树的最近公共祖先)
|
|||
|
* [从有序数组中构造二叉查找树](#从有序数组中构造二叉查找树)
|
|||
|
* [根据有序链表构造平衡的二叉查找树](#根据有序链表构造平衡的二叉查找树)
|
|||
|
* [在二叉查找树中寻找两个节点,使它们的和为一个给定值](#在二叉查找树中寻找两个节点,使它们的和为一个给定值)
|
|||
|
* [在二叉查找树中查找两个节点之差的最小绝对值](#在二叉查找树中查找两个节点之差的最小绝对值)
|
|||
|
* [寻找二叉查找树中出现次数最多的值](#寻找二叉查找树中出现次数最多的值)
|
|||
|
* [Trie](#trie)
|
|||
|
* [实现一个 Trie](#实现一个-trie)
|
|||
|
* [实现一个 Trie,用来求前缀和](#实现一个-trie,用来求前缀和)
|
|||
|
<!-- GFM-TOC -->
|
|||
|
|
|||
|
|
|||
|
# 递归
|
|||
|
|
|||
|
一棵树要么是空树,要么有两个指针,每个指针指向一棵树。树是一种递归结构,很多树的问题可以使用递归来处理。
|
|||
|
|
|||
|
## 树的高度
|
|||
|
|
|||
|
[104. Maximum Depth of Binary Tree (Easy)](https://leetcode.com/problems/maximum-depth-of-binary-tree/description/)
|
|||
|
|
|||
|
```java
|
|||
|
public int maxDepth(TreeNode root) {
|
|||
|
if (root == null) return 0;
|
|||
|
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 平衡树
|
|||
|
|
|||
|
[110. Balanced Binary Tree (Easy)](https://leetcode.com/problems/balanced-binary-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
3
|
|||
|
/ \
|
|||
|
9 20
|
|||
|
/ \
|
|||
|
15 7
|
|||
|
```
|
|||
|
|
|||
|
平衡树左右子树高度差都小于等于 1
|
|||
|
|
|||
|
```java
|
|||
|
private boolean result = true;
|
|||
|
|
|||
|
public boolean isBalanced(TreeNode root) {
|
|||
|
maxDepth(root);
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
public int maxDepth(TreeNode root) {
|
|||
|
if (root == null) return 0;
|
|||
|
int l = maxDepth(root.left);
|
|||
|
int r = maxDepth(root.right);
|
|||
|
if (Math.abs(l - r) > 1) result = false;
|
|||
|
return 1 + Math.max(l, r);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 两节点的最长路径
|
|||
|
|
|||
|
[543. Diameter of Binary Tree (Easy)](https://leetcode.com/problems/diameter-of-binary-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input:
|
|||
|
|
|||
|
1
|
|||
|
/ \
|
|||
|
2 3
|
|||
|
/ \
|
|||
|
4 5
|
|||
|
|
|||
|
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
private int max = 0;
|
|||
|
|
|||
|
public int diameterOfBinaryTree(TreeNode root) {
|
|||
|
depth(root);
|
|||
|
return max;
|
|||
|
}
|
|||
|
|
|||
|
private int depth(TreeNode root) {
|
|||
|
if (root == null) return 0;
|
|||
|
int leftDepth = depth(root.left);
|
|||
|
int rightDepth = depth(root.right);
|
|||
|
max = Math.max(max, leftDepth + rightDepth);
|
|||
|
return Math.max(leftDepth, rightDepth) + 1;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 翻转树
|
|||
|
|
|||
|
[226. Invert Binary Tree (Easy)](https://leetcode.com/problems/invert-binary-tree/description/)
|
|||
|
|
|||
|
```java
|
|||
|
public TreeNode invertTree(TreeNode root) {
|
|||
|
if (root == null) return null;
|
|||
|
TreeNode left = root.left; // 后面的操作会改变 left 指针,因此先保存下来
|
|||
|
root.left = invertTree(root.right);
|
|||
|
root.right = invertTree(left);
|
|||
|
return root;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 归并两棵树
|
|||
|
|
|||
|
[617. Merge Two Binary Trees (Easy)](https://leetcode.com/problems/merge-two-binary-trees/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input:
|
|||
|
Tree 1 Tree 2
|
|||
|
1 2
|
|||
|
/ \ / \
|
|||
|
3 2 1 3
|
|||
|
/ \ \
|
|||
|
5 4 7
|
|||
|
|
|||
|
Output:
|
|||
|
3
|
|||
|
/ \
|
|||
|
4 5
|
|||
|
/ \ \
|
|||
|
5 4 7
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
|
|||
|
if (t1 == null && t2 == null) return null;
|
|||
|
if (t1 == null) return t2;
|
|||
|
if (t2 == null) return t1;
|
|||
|
TreeNode root = new TreeNode(t1.val + t2.val);
|
|||
|
root.left = mergeTrees(t1.left, t2.left);
|
|||
|
root.right = mergeTrees(t1.right, t2.right);
|
|||
|
return root;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 判断路径和是否等于一个数
|
|||
|
|
|||
|
[Leetcdoe : 112. Path Sum (Easy)](https://leetcode.com/problems/path-sum/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Given the below binary tree and sum = 22,
|
|||
|
|
|||
|
5
|
|||
|
/ \
|
|||
|
4 8
|
|||
|
/ / \
|
|||
|
11 13 4
|
|||
|
/ \ \
|
|||
|
7 2 1
|
|||
|
|
|||
|
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.
|
|||
|
```
|
|||
|
|
|||
|
路径和定义为从 root 到 leaf 的所有节点的和。
|
|||
|
|
|||
|
```java
|
|||
|
public boolean hasPathSum(TreeNode root, int sum) {
|
|||
|
if (root == null) return false;
|
|||
|
if (root.left == null && root.right == null && root.val == sum) return true;
|
|||
|
return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 统计路径和等于一个数的路径数量
|
|||
|
|
|||
|
[437. Path Sum III (Easy)](https://leetcode.com/problems/path-sum-iii/description/)
|
|||
|
|
|||
|
```html
|
|||
|
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
|
|||
|
|
|||
|
10
|
|||
|
/ \
|
|||
|
5 -3
|
|||
|
/ \ \
|
|||
|
3 2 11
|
|||
|
/ \ \
|
|||
|
3 -2 1
|
|||
|
|
|||
|
Return 3. The paths that sum to 8 are:
|
|||
|
|
|||
|
1. 5 -> 3
|
|||
|
2. 5 -> 2 -> 1
|
|||
|
3. -3 -> 11
|
|||
|
```
|
|||
|
|
|||
|
路径不一定以 root 开头,也不一定以 leaf 结尾,但是必须连续。
|
|||
|
|
|||
|
```java
|
|||
|
public int pathSum(TreeNode root, int sum) {
|
|||
|
if (root == null) return 0;
|
|||
|
int ret = pathSumStartWithRoot(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
private int pathSumStartWithRoot(TreeNode root, int sum) {
|
|||
|
if (root == null) return 0;
|
|||
|
int ret = 0;
|
|||
|
if (root.val == sum) ret++;
|
|||
|
ret += pathSumStartWithRoot(root.left, sum - root.val) + pathSumStartWithRoot(root.right, sum - root.val);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 子树
|
|||
|
|
|||
|
[572. Subtree of Another Tree (Easy)](https://leetcode.com/problems/subtree-of-another-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Given tree s:
|
|||
|
3
|
|||
|
/ \
|
|||
|
4 5
|
|||
|
/ \
|
|||
|
1 2
|
|||
|
|
|||
|
Given tree t:
|
|||
|
4
|
|||
|
/ \
|
|||
|
1 2
|
|||
|
|
|||
|
Return true, because t has the same structure and node values with a subtree of s.
|
|||
|
|
|||
|
Given tree s:
|
|||
|
|
|||
|
3
|
|||
|
/ \
|
|||
|
4 5
|
|||
|
/ \
|
|||
|
1 2
|
|||
|
/
|
|||
|
0
|
|||
|
|
|||
|
Given tree t:
|
|||
|
4
|
|||
|
/ \
|
|||
|
1 2
|
|||
|
|
|||
|
Return false.
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public boolean isSubtree(TreeNode s, TreeNode t) {
|
|||
|
if (s == null) return false;
|
|||
|
return isSubtreeWithRoot(s, t) || isSubtree(s.left, t) || isSubtree(s.right, t);
|
|||
|
}
|
|||
|
|
|||
|
private boolean isSubtreeWithRoot(TreeNode s, TreeNode t) {
|
|||
|
if (t == null && s == null) return true;
|
|||
|
if (t == null || s == null) return false;
|
|||
|
if (t.val != s.val) return false;
|
|||
|
return isSubtreeWithRoot(s.left, t.left) && isSubtreeWithRoot(s.right, t.right);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 树的对称
|
|||
|
|
|||
|
[101. Symmetric Tree (Easy)](https://leetcode.com/problems/symmetric-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
1
|
|||
|
/ \
|
|||
|
2 2
|
|||
|
/ \ / \
|
|||
|
3 4 4 3
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public boolean isSymmetric(TreeNode root) {
|
|||
|
if (root == null) return true;
|
|||
|
return isSymmetric(root.left, root.right);
|
|||
|
}
|
|||
|
|
|||
|
private boolean isSymmetric(TreeNode t1, TreeNode t2) {
|
|||
|
if (t1 == null && t2 == null) return true;
|
|||
|
if (t1 == null || t2 == null) return false;
|
|||
|
if (t1.val != t2.val) return false;
|
|||
|
return isSymmetric(t1.left, t2.right) && isSymmetric(t1.right, t2.left);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 最小路径
|
|||
|
|
|||
|
[111. Minimum Depth of Binary Tree (Easy)](https://leetcode.com/problems/minimum-depth-of-binary-tree/description/)
|
|||
|
|
|||
|
树的根节点到叶子节点的最小路径长度
|
|||
|
|
|||
|
```java
|
|||
|
public int minDepth(TreeNode root) {
|
|||
|
if (root == null) return 0;
|
|||
|
int left = minDepth(root.left);
|
|||
|
int right = minDepth(root.right);
|
|||
|
if (left == 0 || right == 0) return left + right + 1;
|
|||
|
return Math.min(left, right) + 1;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 统计左叶子节点的和
|
|||
|
|
|||
|
[404. Sum of Left Leaves (Easy)](https://leetcode.com/problems/sum-of-left-leaves/description/)
|
|||
|
|
|||
|
```html
|
|||
|
3
|
|||
|
/ \
|
|||
|
9 20
|
|||
|
/ \
|
|||
|
15 7
|
|||
|
|
|||
|
There are two left leaves in the binary tree, with values 9 and 15 respectively. Return 24.
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public int sumOfLeftLeaves(TreeNode root) {
|
|||
|
if (root == null) return 0;
|
|||
|
if (isLeaf(root.left)) return root.left.val + sumOfLeftLeaves(root.right);
|
|||
|
return sumOfLeftLeaves(root.left) + sumOfLeftLeaves(root.right);
|
|||
|
}
|
|||
|
|
|||
|
private boolean isLeaf(TreeNode node){
|
|||
|
if (node == null) return false;
|
|||
|
return node.left == null && node.right == null;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 相同节点值的最大路径长度
|
|||
|
|
|||
|
[687. Longest Univalue Path (Easy)](https://leetcode.com/problems/longest-univalue-path/)
|
|||
|
|
|||
|
```html
|
|||
|
1
|
|||
|
/ \
|
|||
|
4 5
|
|||
|
/ \ \
|
|||
|
4 4 5
|
|||
|
|
|||
|
Output : 2
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
private int path = 0;
|
|||
|
|
|||
|
public int longestUnivaluePath(TreeNode root) {
|
|||
|
dfs(root);
|
|||
|
return path;
|
|||
|
}
|
|||
|
|
|||
|
private int dfs(TreeNode root){
|
|||
|
if (root == null) return 0;
|
|||
|
int left = dfs(root.left);
|
|||
|
int right = dfs(root.right);
|
|||
|
int leftPath = root.left != null && root.left.val == root.val ? left + 1 : 0;
|
|||
|
int rightPath = root.right != null && root.right.val == root.val ? right + 1 : 0;
|
|||
|
path = Math.max(path, leftPath + rightPath);
|
|||
|
return Math.max(leftPath, rightPath);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 间隔遍历
|
|||
|
|
|||
|
[337. House Robber III (Medium)](https://leetcode.com/problems/house-robber-iii/description/)
|
|||
|
|
|||
|
```html
|
|||
|
3
|
|||
|
/ \
|
|||
|
2 3
|
|||
|
\ \
|
|||
|
3 1
|
|||
|
Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public int rob(TreeNode root) {
|
|||
|
if (root == null) return 0;
|
|||
|
int val1 = root.val;
|
|||
|
if (root.left != null) val1 += rob(root.left.left) + rob(root.left.right);
|
|||
|
if (root.right != null) val1 += rob(root.right.left) + rob(root.right.right);
|
|||
|
int val2 = rob(root.left) + rob(root.right);
|
|||
|
return Math.max(val1, val2);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 找出二叉树中第二小的节点
|
|||
|
|
|||
|
[671. Second Minimum Node In a Binary Tree (Easy)](https://leetcode.com/problems/second-minimum-node-in-a-binary-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input:
|
|||
|
2
|
|||
|
/ \
|
|||
|
2 5
|
|||
|
/ \
|
|||
|
5 7
|
|||
|
|
|||
|
Output: 5
|
|||
|
```
|
|||
|
|
|||
|
一个节点要么具有 0 个或 2 个子节点,如果有子节点,那么根节点是最小的节点。
|
|||
|
|
|||
|
```java
|
|||
|
public int findSecondMinimumValue(TreeNode root) {
|
|||
|
if (root == null) return -1;
|
|||
|
if (root.left == null && root.right == null) return -1;
|
|||
|
int leftVal = root.left.val;
|
|||
|
int rightVal = root.right.val;
|
|||
|
if (leftVal == root.val) leftVal = findSecondMinimumValue(root.left);
|
|||
|
if (rightVal == root.val) rightVal = findSecondMinimumValue(root.right);
|
|||
|
if (leftVal != -1 && rightVal != -1) return Math.min(leftVal, rightVal);
|
|||
|
if (leftVal != -1) return leftVal;
|
|||
|
return rightVal;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
# 层次遍历
|
|||
|
|
|||
|
使用 BFS 进行层次遍历。不需要使用两个队列来分别存储当前层的节点和下一层的节点,因为在开始遍历一层的节点时,当前队列中的节点数就是当前层的节点数,只要控制遍历这么多节点数,就能保证这次遍历的都是当前层的节点。
|
|||
|
|
|||
|
## 一棵树每层节点的平均数
|
|||
|
|
|||
|
[637. Average of Levels in Binary Tree (Easy)](https://leetcode.com/problems/average-of-levels-in-binary-tree/description/)
|
|||
|
|
|||
|
```java
|
|||
|
public List<Double> averageOfLevels(TreeNode root) {
|
|||
|
List<Double> ret = new ArrayList<>();
|
|||
|
if (root == null) return ret;
|
|||
|
Queue<TreeNode> queue = new LinkedList<>();
|
|||
|
queue.add(root);
|
|||
|
while (!queue.isEmpty()) {
|
|||
|
int cnt = queue.size();
|
|||
|
double sum = 0;
|
|||
|
for (int i = 0; i < cnt; i++) {
|
|||
|
TreeNode node = queue.poll();
|
|||
|
sum += node.val;
|
|||
|
if (node.left != null) queue.add(node.left);
|
|||
|
if (node.right != null) queue.add(node.right);
|
|||
|
}
|
|||
|
ret.add(sum / cnt);
|
|||
|
}
|
|||
|
return ret;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 得到左下角的节点
|
|||
|
|
|||
|
[513. Find Bottom Left Tree Value (Easy)](https://leetcode.com/problems/find-bottom-left-tree-value/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input:
|
|||
|
|
|||
|
1
|
|||
|
/ \
|
|||
|
2 3
|
|||
|
/ / \
|
|||
|
4 5 6
|
|||
|
/
|
|||
|
7
|
|||
|
|
|||
|
Output:
|
|||
|
7
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public int findBottomLeftValue(TreeNode root) {
|
|||
|
Queue<TreeNode> queue = new LinkedList<>();
|
|||
|
queue.add(root);
|
|||
|
while (!queue.isEmpty()) {
|
|||
|
root = queue.poll();
|
|||
|
if (root.right != null) queue.add(root.right);
|
|||
|
if (root.left != null) queue.add(root.left);
|
|||
|
}
|
|||
|
return root.val;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
# 前中后序遍历
|
|||
|
|
|||
|
```html
|
|||
|
1
|
|||
|
/ \
|
|||
|
2 3
|
|||
|
/ \ \
|
|||
|
4 5 6
|
|||
|
```
|
|||
|
|
|||
|
- 层次遍历顺序:[1 2 3 4 5 6]
|
|||
|
- 前序遍历顺序:[1 2 4 5 3 6]
|
|||
|
- 中序遍历顺序:[4 2 5 1 3 6]
|
|||
|
- 后序遍历顺序:[4 5 2 6 3 1]
|
|||
|
|
|||
|
层次遍历使用 BFS 实现,利用的就是 BFS 一层一层遍历的特性;而前序、中序、后序遍历利用了 DFS 实现。
|
|||
|
|
|||
|
前序、中序、后序遍只是在对节点访问的顺序有一点不同,其它都相同。
|
|||
|
|
|||
|
① 前序
|
|||
|
|
|||
|
```java
|
|||
|
void dfs(TreeNode root) {
|
|||
|
visit(root);
|
|||
|
dfs(root.left);
|
|||
|
dfs(root.right);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
② 中序
|
|||
|
|
|||
|
```java
|
|||
|
void dfs(TreeNode root) {
|
|||
|
dfs(root.left);
|
|||
|
visit(root);
|
|||
|
dfs(root.right);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
③ 后序
|
|||
|
|
|||
|
```java
|
|||
|
void dfs(TreeNode root) {
|
|||
|
dfs(root.left);
|
|||
|
dfs(root.right);
|
|||
|
visit(root);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 非递归实现二叉树的前序遍历
|
|||
|
|
|||
|
[144. Binary Tree Preorder Traversal (Medium)](https://leetcode.com/problems/binary-tree-preorder-traversal/description/)
|
|||
|
|
|||
|
```java
|
|||
|
public List<Integer> preorderTraversal(TreeNode root) {
|
|||
|
List<Integer> ret = new ArrayList<>();
|
|||
|
Stack<TreeNode> stack = new Stack<>();
|
|||
|
stack.push(root);
|
|||
|
while (!stack.isEmpty()) {
|
|||
|
TreeNode node = stack.pop();
|
|||
|
if (node == null) continue;
|
|||
|
ret.add(node.val);
|
|||
|
stack.push(node.right); // 先右后左,保证左子树先遍历
|
|||
|
stack.push(node.left);
|
|||
|
}
|
|||
|
return ret;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 非递归实现二叉树的后序遍历
|
|||
|
|
|||
|
[145. Binary Tree Postorder Traversal (Medium)](https://leetcode.com/problems/binary-tree-postorder-traversal/description/)
|
|||
|
|
|||
|
前序遍历为 root -> left -> right,后序遍历为 left -> right -> root。可以修改前序遍历成为 root -> right -> left,那么这个顺序就和后序遍历正好相反。
|
|||
|
|
|||
|
```java
|
|||
|
public List<Integer> postorderTraversal(TreeNode root) {
|
|||
|
List<Integer> ret = new ArrayList<>();
|
|||
|
Stack<TreeNode> stack = new Stack<>();
|
|||
|
stack.push(root);
|
|||
|
while (!stack.isEmpty()) {
|
|||
|
TreeNode node = stack.pop();
|
|||
|
if (node == null) continue;
|
|||
|
ret.add(node.val);
|
|||
|
stack.push(node.left);
|
|||
|
stack.push(node.right);
|
|||
|
}
|
|||
|
Collections.reverse(ret);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 非递归实现二叉树的中序遍历
|
|||
|
|
|||
|
[94. Binary Tree Inorder Traversal (Medium)](https://leetcode.com/problems/binary-tree-inorder-traversal/description/)
|
|||
|
|
|||
|
```java
|
|||
|
public List<Integer> inorderTraversal(TreeNode root) {
|
|||
|
List<Integer> ret = new ArrayList<>();
|
|||
|
if (root == null) return ret;
|
|||
|
Stack<TreeNode> stack = new Stack<>();
|
|||
|
TreeNode cur = root;
|
|||
|
while (cur != null || !stack.isEmpty()) {
|
|||
|
while (cur != null) {
|
|||
|
stack.push(cur);
|
|||
|
cur = cur.left;
|
|||
|
}
|
|||
|
TreeNode node = stack.pop();
|
|||
|
ret.add(node.val);
|
|||
|
cur = node.right;
|
|||
|
}
|
|||
|
return ret;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
# BST
|
|||
|
|
|||
|
二叉查找树(BST):根节点大于等于左子树所有节点,小于等于右子树所有节点。
|
|||
|
|
|||
|
二叉查找树中序遍历有序。
|
|||
|
|
|||
|
## 修剪二叉查找树
|
|||
|
|
|||
|
[669. Trim a Binary Search Tree (Easy)](https://leetcode.com/problems/trim-a-binary-search-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input:
|
|||
|
|
|||
|
3
|
|||
|
/ \
|
|||
|
0 4
|
|||
|
\
|
|||
|
2
|
|||
|
/
|
|||
|
1
|
|||
|
|
|||
|
L = 1
|
|||
|
R = 3
|
|||
|
|
|||
|
Output:
|
|||
|
|
|||
|
3
|
|||
|
/
|
|||
|
2
|
|||
|
/
|
|||
|
1
|
|||
|
```
|
|||
|
|
|||
|
题目描述:只保留值在 L \~ R 之间的节点
|
|||
|
|
|||
|
```java
|
|||
|
public TreeNode trimBST(TreeNode root, int L, int R) {
|
|||
|
if (root == null) return null;
|
|||
|
if (root.val > R) return trimBST(root.left, L, R);
|
|||
|
if (root.val < L) return trimBST(root.right, L, R);
|
|||
|
root.left = trimBST(root.left, L, R);
|
|||
|
root.right = trimBST(root.right, L, R);
|
|||
|
return root;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 寻找二叉查找树的第 k 个元素
|
|||
|
|
|||
|
[230. Kth Smallest Element in a BST (Medium)](https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/)
|
|||
|
|
|||
|
|
|||
|
中序遍历解法:
|
|||
|
|
|||
|
```java
|
|||
|
private int cnt = 0;
|
|||
|
private int val;
|
|||
|
|
|||
|
public int kthSmallest(TreeNode root, int k) {
|
|||
|
inOrder(root, k);
|
|||
|
return val;
|
|||
|
}
|
|||
|
|
|||
|
private void inOrder(TreeNode node, int k) {
|
|||
|
if (node == null) return;
|
|||
|
inOrder(node.left, k);
|
|||
|
cnt++;
|
|||
|
if (cnt == k) {
|
|||
|
val = node.val;
|
|||
|
return;
|
|||
|
}
|
|||
|
inOrder(node.right, k);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
递归解法:
|
|||
|
|
|||
|
```java
|
|||
|
public int kthSmallest(TreeNode root, int k) {
|
|||
|
int leftCnt = count(root.left);
|
|||
|
if (leftCnt == k - 1) return root.val;
|
|||
|
if (leftCnt > k - 1) return kthSmallest(root.left, k);
|
|||
|
return kthSmallest(root.right, k - leftCnt - 1);
|
|||
|
}
|
|||
|
|
|||
|
private int count(TreeNode node) {
|
|||
|
if (node == null) return 0;
|
|||
|
return 1 + count(node.left) + count(node.right);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 把二叉查找树每个节点的值都加上比它大的节点的值
|
|||
|
|
|||
|
[Convert BST to Greater Tree (Easy)](https://leetcode.com/problems/convert-bst-to-greater-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input: The root of a Binary Search Tree like this:
|
|||
|
|
|||
|
5
|
|||
|
/ \
|
|||
|
2 13
|
|||
|
|
|||
|
Output: The root of a Greater Tree like this:
|
|||
|
|
|||
|
18
|
|||
|
/ \
|
|||
|
20 13
|
|||
|
```
|
|||
|
|
|||
|
先遍历右子树。
|
|||
|
|
|||
|
```java
|
|||
|
private int sum = 0;
|
|||
|
|
|||
|
public TreeNode convertBST(TreeNode root) {
|
|||
|
traver(root);
|
|||
|
return root;
|
|||
|
}
|
|||
|
|
|||
|
private void traver(TreeNode node) {
|
|||
|
if (node == null) return;
|
|||
|
traver(node.right);
|
|||
|
sum += node.val;
|
|||
|
node.val = sum;
|
|||
|
traver(node.left);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 二叉查找树的最近公共祖先
|
|||
|
|
|||
|
[235. Lowest Common Ancestor of a Binary Search Tree (Easy)](https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
_______6______
|
|||
|
/ \
|
|||
|
___2__ ___8__
|
|||
|
/ \ / \
|
|||
|
0 4 7 9
|
|||
|
/ \
|
|||
|
3 5
|
|||
|
|
|||
|
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
|
|||
|
if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
|
|||
|
if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
|
|||
|
return root;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 二叉树的最近公共祖先
|
|||
|
|
|||
|
[236. Lowest Common Ancestor of a Binary Tree (Medium) ](https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
_______3______
|
|||
|
/ \
|
|||
|
___5__ ___1__
|
|||
|
/ \ / \
|
|||
|
6 2 0 8
|
|||
|
/ \
|
|||
|
7 4
|
|||
|
|
|||
|
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
|
|||
|
if (root == null || root == p || root == q) return root;
|
|||
|
TreeNode left = lowestCommonAncestor(root.left, p, q);
|
|||
|
TreeNode right = lowestCommonAncestor(root.right, p, q);
|
|||
|
return left == null ? right : right == null ? left : root;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 从有序数组中构造二叉查找树
|
|||
|
|
|||
|
[108. Convert Sorted Array to Binary Search Tree (Easy)](https://leetcode.com/problems/convert-sorted-array-to-binary-search-tree/description/)
|
|||
|
|
|||
|
```java
|
|||
|
public TreeNode sortedArrayToBST(int[] nums) {
|
|||
|
return toBST(nums, 0, nums.length - 1);
|
|||
|
}
|
|||
|
|
|||
|
private TreeNode toBST(int[] nums, int sIdx, int eIdx){
|
|||
|
if (sIdx > eIdx) return null;
|
|||
|
int mIdx = (sIdx + eIdx) / 2;
|
|||
|
TreeNode root = new TreeNode(nums[mIdx]);
|
|||
|
root.left = toBST(nums, sIdx, mIdx - 1);
|
|||
|
root.right = toBST(nums, mIdx + 1, eIdx);
|
|||
|
return root;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 根据有序链表构造平衡的二叉查找树
|
|||
|
|
|||
|
[109. Convert Sorted List to Binary Search Tree (Medium)](https://leetcode.com/problems/convert-sorted-list-to-binary-search-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Given the sorted linked list: [-10,-3,0,5,9],
|
|||
|
|
|||
|
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
|
|||
|
|
|||
|
0
|
|||
|
/ \
|
|||
|
-3 9
|
|||
|
/ /
|
|||
|
-10 5
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
public TreeNode sortedListToBST(ListNode head) {
|
|||
|
if (head == null) return null;
|
|||
|
if (head.next == null) return new TreeNode(head.val);
|
|||
|
ListNode preMid = preMid(head);
|
|||
|
ListNode mid = preMid.next;
|
|||
|
preMid.next = null; // 断开链表
|
|||
|
TreeNode t = new TreeNode(mid.val);
|
|||
|
t.left = sortedListToBST(head);
|
|||
|
t.right = sortedListToBST(mid.next);
|
|||
|
return t;
|
|||
|
}
|
|||
|
|
|||
|
private ListNode preMid(ListNode head) {
|
|||
|
ListNode slow = head, fast = head.next;
|
|||
|
ListNode pre = head;
|
|||
|
while (fast != null && fast.next != null) {
|
|||
|
pre = slow;
|
|||
|
slow = slow.next;
|
|||
|
fast = fast.next.next;
|
|||
|
}
|
|||
|
return pre;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 在二叉查找树中寻找两个节点,使它们的和为一个给定值
|
|||
|
|
|||
|
[653. Two Sum IV - Input is a BST (Easy)](https://leetcode.com/problems/two-sum-iv-input-is-a-bst/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input:
|
|||
|
|
|||
|
5
|
|||
|
/ \
|
|||
|
3 6
|
|||
|
/ \ \
|
|||
|
2 4 7
|
|||
|
|
|||
|
Target = 9
|
|||
|
|
|||
|
Output: True
|
|||
|
```
|
|||
|
|
|||
|
使用中序遍历得到有序数组之后,再利用双指针对数组进行查找。
|
|||
|
|
|||
|
应该注意到,这一题不能用分别在左右子树两部分来处理这种思想,因为两个待求的节点可能分别在左右子树中。
|
|||
|
|
|||
|
```java
|
|||
|
public boolean findTarget(TreeNode root, int k) {
|
|||
|
List<Integer> nums = new ArrayList<>();
|
|||
|
inOrder(root, nums);
|
|||
|
int i = 0, j = nums.size() - 1;
|
|||
|
while (i < j) {
|
|||
|
int sum = nums.get(i) + nums.get(j);
|
|||
|
if (sum == k) return true;
|
|||
|
if (sum < k) i++;
|
|||
|
else j--;
|
|||
|
}
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
private void inOrder(TreeNode root, List<Integer> nums) {
|
|||
|
if (root == null) return;
|
|||
|
inOrder(root.left, nums);
|
|||
|
nums.add(root.val);
|
|||
|
inOrder(root.right, nums);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 在二叉查找树中查找两个节点之差的最小绝对值
|
|||
|
|
|||
|
[530. Minimum Absolute Difference in BST (Easy)](https://leetcode.com/problems/minimum-absolute-difference-in-bst/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input:
|
|||
|
|
|||
|
1
|
|||
|
\
|
|||
|
3
|
|||
|
/
|
|||
|
2
|
|||
|
|
|||
|
Output:
|
|||
|
|
|||
|
1
|
|||
|
```
|
|||
|
|
|||
|
利用二叉查找树的中序遍历为有序的性质,计算中序遍历中临近的两个节点之差的绝对值,取最小值。
|
|||
|
|
|||
|
```java
|
|||
|
private int minDiff = Integer.MAX_VALUE;
|
|||
|
private TreeNode preNode = null;
|
|||
|
|
|||
|
public int getMinimumDifference(TreeNode root) {
|
|||
|
inOrder(root);
|
|||
|
return minDiff;
|
|||
|
}
|
|||
|
|
|||
|
private void inOrder(TreeNode node) {
|
|||
|
if (node == null) return;
|
|||
|
inOrder(node.left);
|
|||
|
if (preNode != null) minDiff = Math.min(minDiff, node.val - preNode.val);
|
|||
|
preNode = node;
|
|||
|
inOrder(node.right);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 寻找二叉查找树中出现次数最多的值
|
|||
|
|
|||
|
[501. Find Mode in Binary Search Tree (Easy)](https://leetcode.com/problems/find-mode-in-binary-search-tree/description/)
|
|||
|
|
|||
|
```html
|
|||
|
1
|
|||
|
\
|
|||
|
2
|
|||
|
/
|
|||
|
2
|
|||
|
|
|||
|
return [2].
|
|||
|
```
|
|||
|
|
|||
|
答案可能不止一个,也就是有多个值出现的次数一样多。
|
|||
|
|
|||
|
```java
|
|||
|
private int curCnt = 1;
|
|||
|
private int maxCnt = 1;
|
|||
|
private TreeNode preNode = null;
|
|||
|
|
|||
|
public int[] findMode(TreeNode root) {
|
|||
|
List<Integer> maxCntNums = new ArrayList<>();
|
|||
|
inOrder(root, maxCntNums);
|
|||
|
int[] ret = new int[maxCntNums.size()];
|
|||
|
int idx = 0;
|
|||
|
for (int num : maxCntNums) {
|
|||
|
ret[idx++] = num;
|
|||
|
}
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
private void inOrder(TreeNode node, List<Integer> nums) {
|
|||
|
if (node == null) return;
|
|||
|
inOrder(node.left, nums);
|
|||
|
if (preNode != null) {
|
|||
|
if (preNode.val == node.val) curCnt++;
|
|||
|
else curCnt = 1;
|
|||
|
}
|
|||
|
if (curCnt > maxCnt) {
|
|||
|
maxCnt = curCnt;
|
|||
|
nums.clear();
|
|||
|
nums.add(node.val);
|
|||
|
} else if (curCnt == maxCnt) {
|
|||
|
nums.add(node.val);
|
|||
|
}
|
|||
|
preNode = node;
|
|||
|
inOrder(node.right, nums);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
# Trie
|
|||
|
|
|||
|
<div align="center"> <img src="pics/5c638d59-d4ae-4ba4-ad44-80bdc30f38dd.jpg"/> </div><br>
|
|||
|
|
|||
|
Trie,又称前缀树或字典树,用于判断字符串是否存在或者是否具有某种字符串前缀。
|
|||
|
|
|||
|
## 实现一个 Trie
|
|||
|
|
|||
|
[208. Implement Trie (Prefix Tree) (Medium)](https://leetcode.com/problems/implement-trie-prefix-tree/description/)
|
|||
|
|
|||
|
```java
|
|||
|
class Trie {
|
|||
|
|
|||
|
private class Node {
|
|||
|
Node[] childs = new Node[26];
|
|||
|
boolean isLeaf;
|
|||
|
}
|
|||
|
|
|||
|
private Node root = new Node();
|
|||
|
|
|||
|
public Trie() {
|
|||
|
}
|
|||
|
|
|||
|
public void insert(String word) {
|
|||
|
insert(word, root);
|
|||
|
}
|
|||
|
|
|||
|
private void insert(String word, Node node) {
|
|||
|
if (node == null) return;
|
|||
|
if (word.length() == 0) {
|
|||
|
node.isLeaf = true;
|
|||
|
return;
|
|||
|
}
|
|||
|
int index = indexForChar(word.charAt(0));
|
|||
|
if (node.childs[index] == null) {
|
|||
|
node.childs[index] = new Node();
|
|||
|
}
|
|||
|
insert(word.substring(1), node.childs[index]);
|
|||
|
}
|
|||
|
|
|||
|
public boolean search(String word) {
|
|||
|
return search(word, root);
|
|||
|
}
|
|||
|
|
|||
|
private boolean search(String word, Node node) {
|
|||
|
if (node == null) return false;
|
|||
|
if (word.length() == 0) return node.isLeaf;
|
|||
|
int index = indexForChar(word.charAt(0));
|
|||
|
return search(word.substring(1), node.childs[index]);
|
|||
|
}
|
|||
|
|
|||
|
public boolean startsWith(String prefix) {
|
|||
|
return startWith(prefix, root);
|
|||
|
}
|
|||
|
|
|||
|
private boolean startWith(String prefix, Node node) {
|
|||
|
if (node == null) return false;
|
|||
|
if (prefix.length() == 0) return true;
|
|||
|
int index = indexForChar(prefix.charAt(0));
|
|||
|
return startWith(prefix.substring(1), node.childs[index]);
|
|||
|
}
|
|||
|
|
|||
|
private int indexForChar(char c) {
|
|||
|
return c - 'a';
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 实现一个 Trie,用来求前缀和
|
|||
|
|
|||
|
[677. Map Sum Pairs (Medium)](https://leetcode.com/problems/map-sum-pairs/description/)
|
|||
|
|
|||
|
```html
|
|||
|
Input: insert("apple", 3), Output: Null
|
|||
|
Input: sum("ap"), Output: 3
|
|||
|
Input: insert("app", 2), Output: Null
|
|||
|
Input: sum("ap"), Output: 5
|
|||
|
```
|
|||
|
|
|||
|
```java
|
|||
|
class MapSum {
|
|||
|
|
|||
|
private class Node {
|
|||
|
Node[] child = new Node[26];
|
|||
|
int value;
|
|||
|
}
|
|||
|
|
|||
|
private Node root = new Node();
|
|||
|
|
|||
|
public MapSum() {
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
public void insert(String key, int val) {
|
|||
|
insert(key, root, val);
|
|||
|
}
|
|||
|
|
|||
|
private void insert(String key, Node node, int val) {
|
|||
|
if (node == null) return;
|
|||
|
if (key.length() == 0) {
|
|||
|
node.value = val;
|
|||
|
return;
|
|||
|
}
|
|||
|
int index = indexForChar(key.charAt(0));
|
|||
|
if (node.child[index] == null) {
|
|||
|
node.child[index] = new Node();
|
|||
|
}
|
|||
|
insert(key.substring(1), node.child[index], val);
|
|||
|
}
|
|||
|
|
|||
|
public int sum(String prefix) {
|
|||
|
return sum(prefix, root);
|
|||
|
}
|
|||
|
|
|||
|
private int sum(String prefix, Node node) {
|
|||
|
if (node == null) return 0;
|
|||
|
if (prefix.length() != 0) {
|
|||
|
int index = indexForChar(prefix.charAt(0));
|
|||
|
return sum(prefix.substring(1), node.child[index]);
|
|||
|
}
|
|||
|
int sum = node.value;
|
|||
|
for (Node child : node.child) {
|
|||
|
sum += sum(prefix, child);
|
|||
|
}
|
|||
|
return sum;
|
|||
|
}
|
|||
|
|
|||
|
private int indexForChar(char c) {
|
|||
|
return c - 'a';
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|