2019-04-25 18:24:51 +08:00
|
|
|
|
<!-- GFM-TOC -->
|
|
|
|
|
* [前言](#前言)
|
|
|
|
|
* [Quick Find](#quick-find)
|
|
|
|
|
* [Quick Union](#quick-union)
|
|
|
|
|
* [加权 Quick Union](#加权-quick-union)
|
|
|
|
|
* [路径压缩的加权 Quick Union](#路径压缩的加权-quick-union)
|
|
|
|
|
* [比较](#比较)
|
|
|
|
|
<!-- GFM-TOC -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 前言
|
|
|
|
|
|
|
|
|
|
用于解决动态连通性问题,能动态连接两个点,并且判断两个点是否连通。
|
|
|
|
|
|
2019-04-25 18:43:33 +08:00
|
|
|
|
<div align="center"> <img src="pics/02943a90-7dd4-4e9a-9325-f8217d3cc54d.jpg" width="350"/> </div><br>
|
2019-04-25 18:24:51 +08:00
|
|
|
|
|
|
|
|
|
| 方法 | 描述 |
|
|
|
|
|
| :---: | :---: |
|
|
|
|
|
| UF(int N) | 构造一个大小为 N 的并查集 |
|
|
|
|
|
| void union(int p, int q) | 连接 p 和 q 节点 |
|
|
|
|
|
| int find(int p) | 查找 p 所在的连通分量编号 |
|
|
|
|
|
| boolean connected(int p, int q) | 判断 p 和 q 节点是否连通 |
|
|
|
|
|
|
|
|
|
|
```java
|
|
|
|
|
public abstract class UF {
|
|
|
|
|
|
|
|
|
|
protected int[] id;
|
|
|
|
|
|
|
|
|
|
public UF(int N) {
|
|
|
|
|
id = new int[N];
|
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
|
|
|
id[i] = i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public boolean connected(int p, int q) {
|
|
|
|
|
return find(p) == find(q);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public abstract int find(int p);
|
|
|
|
|
|
|
|
|
|
public abstract void union(int p, int q);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# Quick Find
|
|
|
|
|
|
|
|
|
|
可以快速进行 find 操作,也就是可以快速判断两个节点是否连通。
|
|
|
|
|
|
|
|
|
|
需要保证同一连通分量的所有节点的 id 值相等。
|
|
|
|
|
|
|
|
|
|
但是 union 操作代价却很高,需要将其中一个连通分量中的所有节点 id 值都修改为另一个节点的 id 值。
|
|
|
|
|
|
2019-04-25 18:43:33 +08:00
|
|
|
|
<div align="center"> <img src="pics/0972501d-f854-4d26-8fce-babb27c267f6.jpg" width="320"/> </div><br>
|
2019-04-25 18:24:51 +08:00
|
|
|
|
|
|
|
|
|
```java
|
|
|
|
|
public class QuickFindUF extends UF {
|
|
|
|
|
|
|
|
|
|
public QuickFindUF(int N) {
|
|
|
|
|
super(N);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public int find(int p) {
|
|
|
|
|
return id[p];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public void union(int p, int q) {
|
|
|
|
|
int pID = find(p);
|
|
|
|
|
int qID = find(q);
|
|
|
|
|
|
|
|
|
|
if (pID == qID) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < id.length; i++) {
|
|
|
|
|
if (id[i] == pID) {
|
|
|
|
|
id[i] = qID;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# Quick Union
|
|
|
|
|
|
|
|
|
|
可以快速进行 union 操作,只需要修改一个节点的 id 值即可。
|
|
|
|
|
|
|
|
|
|
但是 find 操作开销很大,因为同一个连通分量的节点 id 值不同,id 值只是用来指向另一个节点。因此需要一直向上查找操作,直到找到最上层的节点。
|
|
|
|
|
|
2019-04-25 18:43:33 +08:00
|
|
|
|
<div align="center"> <img src="pics/11b27de5-5a9d-45e4-95cc-417fa3ad1d38.jpg" width="280"/> </div><br>
|
2019-04-25 18:24:51 +08:00
|
|
|
|
|
|
|
|
|
```java
|
|
|
|
|
public class QuickUnionUF extends UF {
|
|
|
|
|
|
|
|
|
|
public QuickUnionUF(int N) {
|
|
|
|
|
super(N);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public int find(int p) {
|
|
|
|
|
while (p != id[p]) {
|
|
|
|
|
p = id[p];
|
|
|
|
|
}
|
|
|
|
|
return p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public void union(int p, int q) {
|
|
|
|
|
int pRoot = find(p);
|
|
|
|
|
int qRoot = find(q);
|
|
|
|
|
|
|
|
|
|
if (pRoot != qRoot) {
|
|
|
|
|
id[pRoot] = qRoot;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
这种方法可以快速进行 union 操作,但是 find 操作和树高成正比,最坏的情况下树的高度为节点的数目。
|
|
|
|
|
|
2019-04-25 18:43:33 +08:00
|
|
|
|
<div align="center"> <img src="pics/23e4462b-263f-4d15-8805-529e0ca7a4d1.jpg" width="100"/> </div><br>
|
2019-04-25 18:24:51 +08:00
|
|
|
|
|
|
|
|
|
# 加权 Quick Union
|
|
|
|
|
|
|
|
|
|
为了解决 quick-union 的树通常会很高的问题,加权 quick-union 在 union 操作时会让较小的树连接较大的树上面。
|
|
|
|
|
|
|
|
|
|
理论研究证明,加权 quick-union 算法构造的树深度最多不超过 logN。
|
|
|
|
|
|
2019-04-25 18:43:33 +08:00
|
|
|
|
<div align="center"> <img src="pics/a9f18f8a-c1ea-422e-aa56-d91716b0f755.jpg" width="150"/> </div><br>
|
2019-04-25 18:24:51 +08:00
|
|
|
|
|
|
|
|
|
```java
|
|
|
|
|
public class WeightedQuickUnionUF extends UF {
|
|
|
|
|
|
|
|
|
|
// 保存节点的数量信息
|
|
|
|
|
private int[] sz;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public WeightedQuickUnionUF(int N) {
|
|
|
|
|
super(N);
|
|
|
|
|
this.sz = new int[N];
|
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
|
|
|
this.sz[i] = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public int find(int p) {
|
|
|
|
|
while (p != id[p]) {
|
|
|
|
|
p = id[p];
|
|
|
|
|
}
|
|
|
|
|
return p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public void union(int p, int q) {
|
|
|
|
|
|
|
|
|
|
int i = find(p);
|
|
|
|
|
int j = find(q);
|
|
|
|
|
|
|
|
|
|
if (i == j) return;
|
|
|
|
|
|
|
|
|
|
if (sz[i] < sz[j]) {
|
|
|
|
|
id[i] = j;
|
|
|
|
|
sz[j] += sz[i];
|
|
|
|
|
} else {
|
|
|
|
|
id[j] = i;
|
|
|
|
|
sz[i] += sz[j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# 路径压缩的加权 Quick Union
|
|
|
|
|
|
|
|
|
|
在检查节点的同时将它们直接链接到根节点,只需要在 find 中添加一个循环即可。
|
|
|
|
|
|
|
|
|
|
# 比较
|
|
|
|
|
|
|
|
|
|
| 算法 | union | find |
|
|
|
|
|
| :---: | :---: | :---: |
|
|
|
|
|
| Quick Find | N | 1 |
|
|
|
|
|
| Quick Union | 树高 | 树高 |
|
|
|
|
|
| 加权 Quick Union | logN | logN |
|
|
|
|
|
| 路径压缩的加权 Quick Union | 非常接近 1 | 非常接近 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2019-05-04 23:34:02 +08:00
|
|
|
|
</br><div align="center">🎨 </br></br> 关注公众号 CyC2018 获取更多精彩内容!在公众号后台回复关键字 **资料** 可领取一份技术面试复习思维导图,这份大纲是我花了一整年时间整理的面试知识点列表不仅系统整理了面试知识点,而且标注了各个知识点的重要程度,从而帮你理清多而杂的面试知识点。我基本是按照这份大纲来进行复习的,这份大纲对我拿到了 BAT 头条等 Offer 起到很大的帮助。你们完全可以和我一样根据大纲上列的知识点来进行复习,就不用看很多不重要的内容,也可以知道哪些内容很重要从而多安排一些复习时间。</div></br>
|
2019-04-25 18:24:51 +08:00
|
|
|
|
<div align="center"><img width="180px" src="https://cyc-1256109796.cos.ap-guangzhou.myqcloud.com/%E5%85%AC%E4%BC%97%E5%8F%B7.jpg"></img></div>
|