CS-Notes/notes/Leetcode 题解 - 图.md

268 lines
7.0 KiB
Java
Raw Normal View History

2020-11-17 00:32:18 +08:00
# Leetcode 题解 -
2019-04-25 18:24:51 +08:00
<!-- GFM-TOC -->
2020-11-17 00:32:18 +08:00
* [Leetcode 题解 - ](#leetcode-题解---)
* [二分图](#二分图)
* [1. 判断是否为二分图](#1-判断是否为二分图)
* [拓扑排序](#拓扑排序)
* [1. 课程安排的合法性](#1-课程安排的合法性)
* [2. 课程安排的顺序](#2-课程安排的顺序)
* [并查集](#并查集)
* [1. 冗余连接](#1-冗余连接)
2019-04-25 18:24:51 +08:00
<!-- GFM-TOC -->
2020-11-17 00:32:18 +08:00
## 二分图
2019-04-25 18:24:51 +08:00
如果可以用两种颜色对图中的节点进行着色并且保证相邻的节点颜色不同那么这个图就是二分图
2020-11-17 00:32:18 +08:00
### 1. 判断是否为二分图
2019-04-25 18:24:51 +08:00
2019-10-27 00:52:52 +08:00
785\. Is Graph Bipartite? (Medium)
[Leetcode](https://leetcode.com/problems/is-graph-bipartite/description/) / [力扣](https://leetcode-cn.com/problems/is-graph-bipartite/description/)
2019-04-25 18:24:51 +08:00
```html
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
```
```html
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
```
```java
public boolean isBipartite(int[][] graph) {
int[] colors = new int[graph.length];
Arrays.fill(colors, -1);
for (int i = 0; i < graph.length; i++) { // 处理图不是连通的情况
if (colors[i] == -1 && !isBipartite(i, 0, colors, graph)) {
return false;
}
}
return true;
}
private boolean isBipartite(int curNode, int curColor, int[] colors, int[][] graph) {
if (colors[curNode] != -1) {
return colors[curNode] == curColor;
}
colors[curNode] = curColor;
for (int nextNode : graph[curNode]) {
if (!isBipartite(nextNode, 1 - curColor, colors, graph)) {
return false;
}
}
return true;
}
```
2020-11-17 00:32:18 +08:00
## 拓扑排序
2019-04-25 18:24:51 +08:00
常用于在具有先序关系的任务规划中
2020-11-17 00:32:18 +08:00
### 1. 课程安排的合法性
2019-04-25 18:24:51 +08:00
2019-10-27 00:52:52 +08:00
207\. Course Schedule (Medium)
[Leetcode](https://leetcode.com/problems/course-schedule/description/) / [力扣](https://leetcode-cn.com/problems/course-schedule/description/)
2019-04-25 18:24:51 +08:00
```html
2, [[1,0]]
return true
```
```html
2, [[1,0],[0,1]]
return false
```
题目描述一个课程可能会先修课程判断给定的先修课程规定是否合法
本题不需要使用拓扑排序只需要检测有向图是否存在环即可
```java
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] graphic = new List[numCourses];
for (int i = 0; i < numCourses; i++) {
graphic[i] = new ArrayList<>();
}
for (int[] pre : prerequisites) {
graphic[pre[0]].add(pre[1]);
}
boolean[] globalMarked = new boolean[numCourses];
boolean[] localMarked = new boolean[numCourses];
for (int i = 0; i < numCourses; i++) {
if (hasCycle(globalMarked, localMarked, graphic, i)) {
return false;
}
}
return true;
}
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked,
List<Integer>[] graphic, int curNode) {
if (localMarked[curNode]) {
return true;
}
if (globalMarked[curNode]) {
return false;
}
globalMarked[curNode] = true;
localMarked[curNode] = true;
for (int nextNode : graphic[curNode]) {
if (hasCycle(globalMarked, localMarked, graphic, nextNode)) {
return true;
}
}
localMarked[curNode] = false;
return false;
}
```
2020-11-17 00:32:18 +08:00
### 2. 课程安排的顺序
2019-04-25 18:24:51 +08:00
2019-10-27 00:52:52 +08:00
210\. Course Schedule II (Medium)
[Leetcode](https://leetcode.com/problems/course-schedule-ii/description/) / [力扣](https://leetcode-cn.com/problems/course-schedule-ii/description/)
2019-04-25 18:24:51 +08:00
```html
4, [[1,0],[2,0],[3,1],[3,2]]
There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].
```
使用 DFS 来实现拓扑排序使用一个栈存储后序遍历结果这个栈的逆序结果就是拓扑排序结果
2020-11-17 00:32:18 +08:00
证明对于任何先序关系v-\>w后序遍历结果可以保证 w 先进入栈中因此栈的逆序结果中 v 会在 w 之前
2019-04-25 18:24:51 +08:00
```java
public int[] findOrder(int numCourses, int[][] prerequisites) {
List<Integer>[] graphic = new List[numCourses];
for (int i = 0; i < numCourses; i++) {
graphic[i] = new ArrayList<>();
}
for (int[] pre : prerequisites) {
graphic[pre[0]].add(pre[1]);
}
Stack<Integer> postOrder = new Stack<>();
boolean[] globalMarked = new boolean[numCourses];
boolean[] localMarked = new boolean[numCourses];
for (int i = 0; i < numCourses; i++) {
if (hasCycle(globalMarked, localMarked, graphic, i, postOrder)) {
return new int[0];
}
}
int[] orders = new int[numCourses];
for (int i = numCourses - 1; i >= 0; i--) {
orders[i] = postOrder.pop();
}
return orders;
}
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic,
int curNode, Stack<Integer> postOrder) {
if (localMarked[curNode]) {
return true;
}
if (globalMarked[curNode]) {
return false;
}
globalMarked[curNode] = true;
localMarked[curNode] = true;
for (int nextNode : graphic[curNode]) {
if (hasCycle(globalMarked, localMarked, graphic, nextNode, postOrder)) {
return true;
}
}
localMarked[curNode] = false;
postOrder.push(curNode);
return false;
}
```
2020-11-17 00:32:18 +08:00
## 并查集
2019-04-25 18:24:51 +08:00
并查集可以动态地连通两个点并且可以非常快速地判断两个点是否连通
2020-11-17 00:32:18 +08:00
### 1. 冗余连接
2019-04-25 18:24:51 +08:00
2019-10-27 00:52:52 +08:00
684\. Redundant Connection (Medium)
[Leetcode](https://leetcode.com/problems/redundant-connection/description/) / [力扣](https://leetcode-cn.com/problems/redundant-connection/description/)
2019-04-25 18:24:51 +08:00
```html
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
1
/ \
2 - 3
```
题目描述有一系列的边连成的图找出一条边移除它之后该图能够成为一棵树
```java
public int[] findRedundantConnection(int[][] edges) {
int N = edges.length;
UF uf = new UF(N);
for (int[] e : edges) {
int u = e[0], v = e[1];
if (uf.connect(u, v)) {
return e;
}
uf.union(u, v);
}
return new int[]{-1, -1};
}
private class UF {
private int[] id;
UF(int N) {
id = new int[N + 1];
for (int i = 0; i < id.length; i++) {
id[i] = i;
}
}
void union(int u, int v) {
int uID = find(u);
int vID = find(v);
if (uID == vID) {
return;
}
for (int i = 0; i < id.length; i++) {
if (id[i] == uID) {
id[i] = vID;
}
}
}
int find(int p) {
return id[p];
}
boolean connect(int u, int v) {
return find(u) == find(v);
}
}
```