mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
dd3af96771
4900-4999
170 lines
3.3 KiB
C++
170 lines
3.3 KiB
C++
#include <cstdio>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
using namespace std;
|
|
typedef __int64 LL;
|
|
const int MAXN = 1005;
|
|
int prim[MAXN], nprm;
|
|
bool vis[MAXN];
|
|
int n, m;
|
|
void init_prim()
|
|
{
|
|
for (int i = 2; i< MAXN; ++i)
|
|
{
|
|
if (!vis[i]) prim[nprm++] = i;
|
|
for (int j = 0; j< nprm && prim[j]&i < MAXN; ++i)
|
|
{
|
|
vis[prim[j]*i] = 1;
|
|
if (i % prim[j] == 0) break;
|
|
}
|
|
}
|
|
}
|
|
int Euler(int x)
|
|
{
|
|
int res = x;
|
|
for (int i = 0, k; i< nprm ; ++i)
|
|
{
|
|
k = prim[i];
|
|
if (k * k > x) break;
|
|
if (x % k == 0)
|
|
{
|
|
res = res/k*(k-1);
|
|
while (x%k==0) x/=k;
|
|
}
|
|
}
|
|
if (x!=1) res = res/x*(x-1);
|
|
return res;
|
|
}
|
|
int nfen, fen[100][2];
|
|
void m_divide(int x)
|
|
{
|
|
nfen = 0;
|
|
for (int i = 0, k; i< nprm ; ++i)
|
|
{
|
|
k = prim[i];
|
|
if (k * k > x) break;
|
|
if (x % k == 0)
|
|
{
|
|
fen[nfen][0] = k;
|
|
fen[nfen][1] = 0;
|
|
while (x%k==0) x/=k, ++fen[nfen][1];
|
|
++nfen;
|
|
}
|
|
}
|
|
if (x!=1) fen[nfen][0]=x, fen[nfen++][1]=1;
|
|
}
|
|
LL mpow(LL a, int b, LL mod)
|
|
{
|
|
LL res = 1LL;
|
|
while (b)
|
|
{
|
|
if (b&1) res = res*a%mod;
|
|
a = a*a%mod;
|
|
b >>= 1;
|
|
}
|
|
return res;
|
|
}
|
|
int caonima = 0;
|
|
LL ri;
|
|
void dfs(int idx, LL all)
|
|
{
|
|
if (caonima) return;
|
|
if (idx == nfen)
|
|
{
|
|
if (all == 1LL || all == m) return;
|
|
if (mpow(ri, all, n) == 1LL)
|
|
caonima = 1;
|
|
return;
|
|
}
|
|
for (int i = 0; i<=fen[idx][1]; ++i)
|
|
{
|
|
dfs(idx+1, all);
|
|
all *= fen[idx][0];
|
|
}
|
|
}
|
|
int check(LL r)
|
|
{
|
|
LL res = r;
|
|
if (mpow(r, m, n) != 1LL) return 0;
|
|
caonima = 0;
|
|
ri = res;
|
|
dfs(0, 1);
|
|
if (caonima) return 0;
|
|
return 1;
|
|
}
|
|
int gcd(int a, int b)
|
|
{
|
|
return b==0?a:gcd(b,a%b);
|
|
}
|
|
int opt[1000000], cnt;
|
|
void solve()
|
|
{
|
|
m = Euler(n);
|
|
m_divide(m);
|
|
int ff = 0;
|
|
for (int i = 2; i< n; ++i)
|
|
{
|
|
if (check(i))
|
|
{
|
|
ff = i;
|
|
break;
|
|
}
|
|
}
|
|
if (!ff)
|
|
{
|
|
printf("-1\n");
|
|
return;
|
|
}
|
|
cnt = 0;
|
|
opt[cnt++] = ff;
|
|
LL res = ff;
|
|
res = res*ff%n;
|
|
for (int i = 2; i< m; ++i, res = res*ff%n)
|
|
{
|
|
if (gcd(i, m) == 1)
|
|
{
|
|
opt[cnt++] = res;
|
|
}
|
|
}
|
|
sort(opt, opt+cnt);
|
|
printf("%d", opt[0]);
|
|
for (int i = 1; i< cnt; ++i)
|
|
{
|
|
printf(" %d", opt[i]);
|
|
}
|
|
puts("");
|
|
}
|
|
int main()
|
|
{
|
|
init_prim();
|
|
while (scanf("%d", &n) != EOF)
|
|
{
|
|
if (n==2) puts("1");
|
|
else if (n==4) puts("3");
|
|
else
|
|
{
|
|
int p = n, cc = 0;
|
|
if (n%2==0) n>>=1;
|
|
for (int i = 0, k; i<nprm ; ++i)
|
|
{
|
|
k = prim[i];
|
|
if (k*k > n) break;
|
|
if (n % k == 0)
|
|
{
|
|
if (++cc > 1) break;
|
|
while (n % k==0) n /= k;
|
|
}
|
|
}
|
|
if (n!=1) ++cc;
|
|
if (cc!=1) puts("-1");
|
|
else
|
|
{
|
|
n = p;
|
|
solve();
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|