mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
200 lines
5.9 KiB
C++
200 lines
5.9 KiB
C++
/// General includes
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
|
|
#include <algorithm>
|
|
using namespace std;
|
|
|
|
|
|
/// 单点更新合并线段树: 单点更新,区间合并
|
|
namespace MergeSegmentTree
|
|
{
|
|
|
|
const int MAXN = 1000100;
|
|
const int MAXTREENODE = MAXN<<2;
|
|
|
|
|
|
int seq[MAXN];
|
|
|
|
struct node
|
|
{
|
|
/// Be Sure That "BounderLen" always equal to "RightBounder - LeftBounder + 1"
|
|
/// And Bounder Never change in one single test.
|
|
int leftbounder,rightbounder,bounderlen;
|
|
int leftseqlen,rightseqlen,mergedseqlen; /// From HDU 3308
|
|
int leftvalue,rightvalue;
|
|
};
|
|
|
|
node tree[MAXTREENODE];
|
|
|
|
/// _internal_v is a indexer of SegmentTree. It guides the procedure to the right node.
|
|
|
|
void pushup(int _internal_v)
|
|
{
|
|
/// Left == Left.Left
|
|
tree[_internal_v].leftseqlen=tree[_internal_v<<1].leftseqlen;
|
|
tree[_internal_v].leftvalue=tree[_internal_v<<1].leftvalue;
|
|
|
|
/// Right == Right.Right
|
|
tree[_internal_v].rightseqlen=tree[_internal_v<<1|1].rightseqlen;
|
|
tree[_internal_v].rightvalue=tree[_internal_v<<1|1].rightvalue;
|
|
|
|
/// Merged SeqLen is the max one of two sub-tree.MergedSeqLen
|
|
tree[_internal_v].mergedseqlen=max(tree[_internal_v<<1].mergedseqlen,tree[_internal_v<<1|1].mergedseqlen);
|
|
|
|
/// If LeftSon.RightValue < RightSon.LeftValue, a longer Seq may exist.
|
|
if(tree[_internal_v<<1].rightvalue<tree[_internal_v<<1|1].leftvalue)
|
|
{
|
|
/// If LeftSon.LeftSeqLen == LeftSon.BounderLen ...
|
|
if(tree[_internal_v<<1].leftseqlen == tree[_internal_v<<1].bounderlen )
|
|
{
|
|
/// ... ThisNode.LeftSeqLen += RightSon.LeftSeqLen
|
|
tree[_internal_v].leftseqlen+=tree[_internal_v<<1|1].leftseqlen;
|
|
}
|
|
|
|
/// If RightSon.RightSeqLen == RightSon.BounderLen ...
|
|
if(tree[_internal_v<<1|1].rightseqlen == tree[_internal_v<<1|1].bounderlen )
|
|
{
|
|
/// ... ThisNode.RightSeqLen += Left.RightSeqLen
|
|
tree[_internal_v].rightseqlen+=tree[_internal_v<<1].rightseqlen;
|
|
}
|
|
|
|
/// ThisNode.MergedSeqLen is the max one between itself and ...
|
|
/// ... LeftSon.RightSeqLen + RightSon.LeftSeqLen
|
|
tree[_internal_v].mergedseqlen=
|
|
max(tree[_internal_v].mergedseqlen,
|
|
tree[_internal_v<<1].rightseqlen+tree[_internal_v<<1|1].leftseqlen);
|
|
}
|
|
}
|
|
|
|
void build(int L,int R,int _internal_v=1) /// Build a tree, _internal_v is 1 by default.
|
|
{
|
|
tree[_internal_v].leftbounder=L;
|
|
tree[_internal_v].rightbounder=R;
|
|
tree[_internal_v].bounderlen=R-L+1;
|
|
if(L==R)
|
|
{
|
|
tree[_internal_v].leftvalue=tree[_internal_v].rightvalue=seq[L];
|
|
/** SeqLen of Single Position is 1 , of course*/
|
|
tree[_internal_v].leftseqlen=
|
|
tree[_internal_v].rightseqlen=
|
|
tree[_internal_v].mergedseqlen=1;
|
|
return;
|
|
}
|
|
int mid=(L+R)>>1;
|
|
build(L,mid,_internal_v<<1);
|
|
build(mid+1,R,_internal_v<<1|1);/// x<<1 == x*2; x<<1|1 == x*2+1; (faster == slower)
|
|
|
|
/// Push Up
|
|
pushup(_internal_v);
|
|
}
|
|
|
|
void update(int Pos,int Val,int _internal_v=1)/// Update a position, _internal_v is 1 by default.
|
|
{
|
|
/// Reach a clearly node with same LeftBounder and RightBounder
|
|
if(tree[_internal_v].leftbounder==tree[_internal_v].rightbounder)
|
|
{
|
|
tree[_internal_v].leftvalue=tree[_internal_v].rightvalue=Val;
|
|
return;
|
|
}
|
|
/// Calculate Mid
|
|
int mid=(tree[_internal_v].leftbounder+tree[_internal_v].rightbounder)>>1;
|
|
/// If in left then try update in left
|
|
if(Pos <= mid)
|
|
update(Pos,Val,_internal_v<<1);
|
|
else /// Else try update in right
|
|
update(Pos,Val,_internal_v<<1|1);
|
|
/// And then push it up !
|
|
pushup(_internal_v);
|
|
}
|
|
|
|
int query(int L,int R,int _internal_v=1)
|
|
{
|
|
/// This Node ( and the segment which is under its control )
|
|
/// is included in query area.
|
|
if(L<=tree[_internal_v].leftbounder && tree[_internal_v].rightbounder <= R)
|
|
{
|
|
return tree[_internal_v].mergedseqlen;
|
|
}
|
|
/// Calculate Mid
|
|
int mid=(tree[_internal_v].leftbounder+tree[_internal_v].rightbounder)>>1;
|
|
/// Answer saved in 'ans'
|
|
int ans=0;
|
|
|
|
/// Query If Segment L~R has common area with ThisNode.LeftBounder~Mid
|
|
if(L<=mid)
|
|
{
|
|
ans=max(ans,query(L,R,_internal_v<<1));
|
|
}
|
|
|
|
/// Query If Segment L~R has common area with Mid+1 ~ ThisNode.RightBounder
|
|
if(mid<R)
|
|
{
|
|
ans=max(ans,query(L,R,_internal_v<<1|1));
|
|
}
|
|
|
|
/// Besides these conditions, the following condition is more complex...
|
|
/// If LeftNode.RightValue < RightNode.LeftValue
|
|
/// (looks like Push Up, but why not push up here ?
|
|
/// Is the amount of query action so huge ? )
|
|
if(tree[_internal_v<<1].rightvalue<tree[_internal_v<<1|1].leftvalue)
|
|
{
|
|
/// Here comes the most complex logic.
|
|
/// Answer is the max one of ...
|
|
ans=max(ans,
|
|
/// the minimum one of "Mid - L + 1" (Actually Left Bounder)
|
|
/// and LeftSon.RightSeqLen
|
|
min(mid-L+1,tree[_internal_v<<1].rightseqlen)
|
|
/// and
|
|
+
|
|
/// the minimum one of "R - Mid" (Actually Right Bounder)
|
|
/// and RightSon.LeftSeqLen
|
|
min(R-mid,tree[_internal_v<<1|1].leftseqlen)
|
|
);
|
|
}
|
|
|
|
/// Return ans. Ans is at least 1
|
|
return ans;
|
|
}
|
|
|
|
}/// End of namespace MergeSegmentTree
|
|
|
|
using namespace MergeSegmentTree;
|
|
|
|
char _buff[8];
|
|
|
|
int main()
|
|
{
|
|
int t;
|
|
scanf("%d",&t);
|
|
while(t--)
|
|
{
|
|
int N,Q;
|
|
scanf("%d %d",&N,&Q);
|
|
for(int i=1; i<=N; i++)
|
|
{
|
|
scanf("%d",&seq[i]);
|
|
}
|
|
build(1,N);
|
|
while(Q--)
|
|
{
|
|
int a,b;
|
|
scanf("%s %d %d",_buff,&a,&b);
|
|
switch(_buff[0])
|
|
{
|
|
case 'Q':
|
|
{
|
|
int ans=query(a+1,b+1);
|
|
printf("%d\n",ans);
|
|
}
|
|
break;
|
|
case 'U':
|
|
update(a+1,b);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|