2016-08-13 23:35:41 +08:00

132 lines
4.8 KiB
C++

//矩阵类
template<typename T> struct mat {
vector<T> a; int h, w;
mat(): a(), h(), w() {}
mat(const mat &v): a(v.a), h(v.h), w(v.w) {}
mat(const int &_h, const int &_w): a(_h * _w), h(_h), w(_w) { }
void init() { a.clear(); a.resize(h * w); }
static mat e(const int &_h, const int &_w) {
mat res(_h, _w);
for (int i = 0, n = min(_h, _w); i < n; i++) { res[i][i] = 1; }
return res;
}
static mat e(const mat &b) { return e(b.h, b.w); }
T *operator[](const int &v) { return &a[v * w]; }
const T *operator[](const int &v)const { return &a[v * w]; }
mat &operator+=(const mat &b) {
for (int i = 0, n = h * w; i < n; i++) { a[i] += b.a[i]; }
return *this;
}
mat &operator-=(const mat &b) { return *this += -b; }
mat &operator*=(const mat &b) {
mat c(h, b.w);
for (int i = 0; i < h; i++) {
for (int k = 0; k < w; k++) {
const T &tmp = (*this)[i][k];
if (isZero(tmp)) { continue; }
for (int j = 0; j < b.w; j++) { c[i][j] = (c[i][j] + tmp * b[k][j])/*%M*/; }
}
}
swap(a, c.a); h = c.h; w = c.w; return *this;
}
mat operator-()const {
mat ret(*this);
for (int i = 0, n = h * w; i < n; i++) { ret.a[i] = -ret.a[i]; }
return ret;
}
mat operator+(const mat &b)const { return mat(*this) += b; }
mat operator-(const mat &b)const { return mat(*this) -= b; }
mat operator*(const mat &b)const { return mat(*this) *= b; }
mat operator^(const ll &v)const {
mat ret(e(*this)), t(*this);
for (ll b = v; b; b >>= 1) { if (b & 1) { ret *= t; } t *= t; }
return ret;
}
bool operator==(const mat &b)const {
if (h != b.h || w != b.w) { return false; }
for (int i = 0, n = h * w; i < n; i++) { if (!isZero(a[i] - b.a[i])) { return false; } }
return true;
}
bool operator!=(const mat &b)const { return !(*this == b); }
T abs(const T &v)const { return v < 0 ? -v : v; }
bool isZero(const T &v)const { return abs(v) < 1e-9; }
void input() { for (int i = 0, n = h * w; i < n; i++) { scanf("%I64d", &a[i]); } }
void print()const {
for (int i = 0, n = h * w; i < n; i++) { printf("%I64d%c", a[i], i % w == w - 1 ? '\n' : ' '); }
}
mat trans()const {
mat ret(w, h);
for (int i = 0; i < w; i++) { for (int j = 0; j < h; j++) { ret[i][j] = a[j][i]; } }
return ret;
}
//求逆矩阵 限double 可逆则返回true 结果在参数v中
bool inv(mat &v)const {
if (h != w) { return false; }
int is[N], js[N]; v = *this;
for (int k = 0; k < h; k++) {
double t = 0;
for (int i = k; i < h; i++) {
for (int j = k; j < h; j++) {
if (abs(v[i][j]) > t) { t = abs(v[is[k] = i][js[k] = j]); }
}
}
if (isZero(t)) { return false; }
if (is[k] != k) { for (int j = 0; j < h; j++) { swap(v[k][j], v[is[k]][j]); } }
if (js[k] != k) { for (int i = 0; i < h; i++) { swap(v[i][k], v[i][js[k]]); } }
v[k][k] = 1.0 / v[k][k];
for (int j = 0; j < h; j++) { if (j != k) { v[k][j] *= v[k][k]; } }
for (int i = 0; i < h; i++) {
if (i != k) { for (int j = 0; j < h; j++) { if (j != k) { v[i][j] -= v[i][k] * v[k][j]; } } }
}
for (int i = 0; i < h; i++) { if (i != k) { v[i][k] *= -v[k][k]; } }
}
for (int k = h - 1; k >= 0; k--) {
for (int j = 0; j < h; j++) { if (js[k] != k) { swap(v[k][j], v[js[k]][j]); } }
for (int i = 0; i < h; i++) { if (is[k] != k) { swap(v[i][k], v[i][is[k]]); } }
}
return true;
}
//求行列式模M 需逆元
ll detmod()const {
if (h != w) { return 0; }
ll res = 1; mat c(*this);
for (int i = 0; i < h; i++) {
for (int j = 0; j < h; j++) { c[i][j] = (c[i][j] % M + M) % M; }
}
for (int i = 0; i < h; i++) {
for (int j = i; j < h; j++) {
if (c[j][i] != 0) {
for (int k = i; k < h; k++) { swap(c[i][k], c[j][k]); }
if (i != j) { res = (-res + M) % M; }
break;
}
}
if (c[i][i] == 0) { res = -1; break; }
for (int j = i + 1; j < h; j++) {
//int mul = (c[j][i] * Inv[c[i][i]]) % M; //打表逆元
ll mul = (c[j][i] * inv(c[i][i], M)) % M;
for (int k = i; k < h; k++) { c[j][k] = (c[j][k] - (c[i][k] * mul) % M + M) % M; }
}
res = (res * c[i][i]) % M;
}
return res;
}
//求行列式 限double
double det()const {
if (h != w) { return 0; }
int sign = 0; double ret = 1.0; mat c(*this);
for (int i = 0, j, k; i < h; i++) {
if (isZero(c[i][i])) {
for (j = i + 1; j < h && isZero(c[j][i]); j++);
if (j == h) { return 0; }
for (k = i; k < h; k++) { swap(c[i][k], c[j][k]); }
sign++;
}
ret *= c[i][i];
for (k = i + 1; k < h; k++) { c[i][k] /= c[i][i]; }
for (j = i + 1; j < h; j++) { for (k = i + 1; k < h; k++) { c[j][k] -= c[j][i] * c[i][k]; } }
}
return sign & 1 ? -ret : ret;
}
};