mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
82 lines
2.7 KiB
C++
82 lines
2.7 KiB
C++
#include <cstdio>
|
||
#include <iostream>
|
||
|
||
using namespace std;
|
||
|
||
const int N = 50005;
|
||
int father[N];
|
||
int relation[N];//根点节到点节的关系
|
||
|
||
void init(int n)
|
||
{
|
||
for(int i = 0; i <= n; ++i)
|
||
{
|
||
father[i]= i;
|
||
relation[i] = 0;
|
||
}
|
||
}
|
||
//更新的步调,先将当前点节与其根点节相连,然后更新其与根点节的关系
|
||
//当前节点x与根节点r的关系更新的方法:
|
||
// (x与其父点节的关系+其父点节的关系与根点节的关系)%3
|
||
//所以在更新节点x的数据之前需要更新其父节点的数据,这是find为什么搞成递归函数的原因
|
||
//其更新的次序是从根节点开始往下,始终到当前点节x的父点节。
|
||
int find(int x)
|
||
{
|
||
if(x != father[x])//不是根点节
|
||
{
|
||
int temp = father[x];
|
||
//将当前点节的父点节设置为根点节
|
||
father[x] = find(temp);
|
||
//更新当前点节与根点节的关系,由x->x父和x父->父根的关系失掉x->父根的关系
|
||
//所以在这之前必须更新其父点节与根点节的关系
|
||
relation[x] = (relation[x] + relation[temp]) % 3;
|
||
}
|
||
return father[x];
|
||
}
|
||
|
||
int main()
|
||
{
|
||
int n, m, x, y, d, fx, fy, cnt;
|
||
|
||
while(~scanf("%d %d", &n, &m))//POJ上只要需一次入输,所以不要需while循环
|
||
{
|
||
cnt = 0;
|
||
init(n);
|
||
for(int i = 0; i < m; ++i)
|
||
{
|
||
scanf("%d %d %d", &d, &x, &y);
|
||
if(x > n || y > n)
|
||
{
|
||
++cnt;
|
||
continue;
|
||
}
|
||
if(d == 2 && x == y)
|
||
{
|
||
++cnt;
|
||
continue;
|
||
}
|
||
fx = find(x);
|
||
fy = find(y);
|
||
if(fx == fy)//属于同一个子集
|
||
{
|
||
//如果x、y是同类,那么他们相对根点节的关系应该是一样的
|
||
if(d == 1 && relation[x] != relation[y])
|
||
++cnt;
|
||
//如果不是同类,加入x与y的关系之后,x相对根点节的关系(x根->y,y->x(即3-(d-1)=2).即x根->x)应该是不变的
|
||
//这里d=2表示x - y = 2-1=1;而y->x=3-(x->y)=3-1=2;
|
||
if(d == 2 && relation[x] != (relation[y] + 2)%3)
|
||
++cnt;
|
||
}
|
||
else//合并两个连通区域
|
||
{
|
||
father[fy] = fx;//y根的父点节更新成x根
|
||
//(d-1)为x与y的关系,3-relation[y]是y与y的根点节的关系,注意方向,relation[x]是其根点节与x的关系
|
||
//x根->x,x->y,y->y根:即x根->y根
|
||
relation[fy] = (relation[x] + (d-1) + (3-relation[y])) % 3;//注意这里只更新的是fy相对于根的关系
|
||
}
|
||
}
|
||
printf("%d\n", cnt);
|
||
}
|
||
return 0;
|
||
}
|