mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
a4744a8c1c
5200-5299
188 lines
4.8 KiB
C++
188 lines
4.8 KiB
C++
#include<iostream>
|
|
#include<cstdio>
|
|
#include<string>
|
|
#include<cstring>
|
|
#include<cmath>
|
|
#include<vector>
|
|
#include<queue>
|
|
using namespace std;
|
|
typedef long long LL;
|
|
const int INF=0x3f3f3f3f;
|
|
const int MAXN=2010;
|
|
int N,M;
|
|
struct Edge{
|
|
int from,to,cap,flow;
|
|
};
|
|
struct Dinic{
|
|
int n,m,s,t;
|
|
vector<Edge> edges;
|
|
vector<int> G[MAXN];
|
|
bool vis[MAXN];
|
|
int d[MAXN];
|
|
int cur[MAXN];
|
|
void clear_all(int n){
|
|
for(int i=0;i<n;i++) G[i].clear();
|
|
edges.clear();
|
|
}
|
|
void clear_flow(){
|
|
int len=edges.size();
|
|
for(int i=0;i<len;i++) edges[i].flow=0;
|
|
}
|
|
void add_edge(int from,int to,int cap){
|
|
edges.push_back((Edge){from,to,cap,0});
|
|
edges.push_back((Edge){to,from,0,0});
|
|
m=edges.size();
|
|
G[from].push_back(m-2);
|
|
G[to].push_back(m-1);
|
|
}
|
|
bool BFS(){
|
|
memset(vis,0,sizeof(vis));
|
|
queue<int> q;
|
|
q.push(s);
|
|
d[s]=0;
|
|
vis[s]=1;
|
|
while(!q.empty()){
|
|
int x=q.front();
|
|
q.pop();
|
|
int len=G[x].size();
|
|
for(int i=0;i<len;i++){
|
|
Edge& e=edges[G[x][i]];
|
|
if(!vis[e.to]&&e.cap>e.flow){
|
|
vis[e.to]=1;
|
|
d[e.to]=d[x]+1;
|
|
q.push(e.to);
|
|
}
|
|
}
|
|
}
|
|
return vis[t];
|
|
}
|
|
int DFS(int x,int a){
|
|
if(x==t||a==0) return a;
|
|
int flow=0,f,len=G[x].size();
|
|
for(int& i=cur[x];i<len;i++){
|
|
Edge& e=edges[G[x][i]];
|
|
if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
|
|
e.flow+=f;
|
|
edges[G[x][i]^1].flow-=f;
|
|
flow+=f;
|
|
a-=f;
|
|
if(a==0) break;
|
|
}
|
|
}
|
|
return flow;
|
|
}
|
|
int maxflow(int s,int t){
|
|
this->s=s;
|
|
this->t=t;
|
|
int flow=0;
|
|
while(BFS()){
|
|
memset(cur,0,sizeof(cur));
|
|
flow+=DFS(s,INF);
|
|
}
|
|
return flow;
|
|
}
|
|
int mincut(){
|
|
int ans=0;
|
|
int len=edges.size();
|
|
for(int i=0;i<len;i++){
|
|
Edge& e=edges[i];
|
|
if(vis[e.from]&&!vis[e.to]&&e.cap>0) ans++;
|
|
}
|
|
return ans;
|
|
}
|
|
void reduce(){
|
|
int len=edges.size();
|
|
for(int i=0;i<len;i++) edges[i].cap-=edges[i].flow;
|
|
}
|
|
}solver;
|
|
int d[MAXN];
|
|
vector<int> p[MAXN];
|
|
struct HeapNode{
|
|
int u,d;
|
|
bool operator < (const HeapNode& rhs) const{
|
|
return d>rhs.d;
|
|
}
|
|
};
|
|
struct Edge2{
|
|
int u,v,dist;
|
|
};
|
|
struct Dijkstra{
|
|
int n,m;
|
|
vector<Edge2> edges;
|
|
vector<int> G[MAXN];
|
|
bool done[MAXN];
|
|
void init(int n){
|
|
this->n=n;
|
|
for(int i=0;i<n;i++) G[i].clear();
|
|
edges.clear();
|
|
}
|
|
void add_edge(int u,int v,int dist){
|
|
edges.push_back((Edge2){u,v,dist});
|
|
m=edges.size();
|
|
G[u].push_back(m-1);
|
|
}
|
|
void dijkstra(int s){
|
|
priority_queue<HeapNode> q;
|
|
for(int i=0;i<n;i++) p[i].clear();
|
|
for(int i=0;i<n;i++) d[i]=INF;
|
|
d[s]=0;
|
|
memset(done,0,sizeof(done));
|
|
q.push((HeapNode){s,0});
|
|
while(!q.empty()){
|
|
HeapNode x=q.top();
|
|
q.pop();
|
|
int u=x.u;
|
|
if(done[u]) continue;
|
|
done[u]=true;
|
|
int L=G[u].size();
|
|
for(int i=0;i<L;i++){
|
|
Edge2& e=edges[G[u][i]];
|
|
if(d[e.v]>d[u]+e.dist){
|
|
d[e.v]=d[u]+e.dist;
|
|
p[e.v].clear();
|
|
p[e.v].push_back(u);
|
|
q.push((HeapNode){e.v,d[e.v]});
|
|
}
|
|
else if(d[e.v]==d[u]+e.dist){
|
|
p[e.v].push_back(u);
|
|
q.push((HeapNode){e.v,d[e.v]});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}solver2;
|
|
int num[MAXN];
|
|
int dfs(int u){
|
|
if(u==0) return 0;
|
|
if(num[u]!=INF) return num[u];
|
|
int len=p[u].size();
|
|
for(int i=0;i<len;i++){
|
|
int fa=p[u][i];
|
|
solver.add_edge(fa,u,1);
|
|
solver.add_edge(u,fa,1);
|
|
num[u]=min(num[u],dfs(fa)+1);
|
|
}
|
|
return num[u];
|
|
}
|
|
int main(){
|
|
while(scanf("%d%d",&N,&M)!=EOF){
|
|
solver2.init(N+1);
|
|
int u,v,t;
|
|
for(int i=0;i<M;i++){
|
|
scanf("%d%d%d",&u,&v,&t);
|
|
u--;
|
|
v--;
|
|
solver2.add_edge(u,v,t);
|
|
solver2.add_edge(v,u,t);
|
|
}
|
|
solver2.dijkstra(0);
|
|
memset(num,INF,sizeof(num));
|
|
solver.clear_all(N+1);
|
|
int n=dfs(N-1);
|
|
solver.maxflow(0,N-1);
|
|
int ans1=solver.mincut(),ans2=M-num[N-1];
|
|
printf("%d %d\n",ans1,ans2);
|
|
}
|
|
return 0;
|
|
}
|