mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
1b77522684
4800-4899
170 lines
4.3 KiB
C++
170 lines
4.3 KiB
C++
#include <cstdio>
|
|
#include <cstring>
|
|
#include <algorithm>
|
|
using namespace std ;
|
|
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
|
|
#define REV( i , n ) for ( int i = n - 1 ; i >= 0 ; -- i )
|
|
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
|
|
#define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i )
|
|
#define REPF( i , a , b ) for ( int i = a ; i < b ; ++ i )
|
|
#define REPV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i )
|
|
#define CLR( a , x ) memset ( a , x , sizeof a )
|
|
#define mid() ( ( l + r ) >> 1 )
|
|
typedef long long LL ;
|
|
const int MAXN = 100005 ;
|
|
const int MAXE = 200005 ;
|
|
struct Edge {
|
|
int h , c , n ;
|
|
Edge () {}
|
|
Edge ( int h , int c , int n ) :
|
|
h ( h ) , c ( c ) , n ( n ) {}
|
|
} ;
|
|
struct Seg_Tree {
|
|
int Ls , Rs ;
|
|
int c ;
|
|
LL val ;
|
|
} ;
|
|
Edge E[MAXE] ;
|
|
int H[MAXN] , cntE ;
|
|
Seg_ T[MAXN * 38] ;
|
|
int idx ;
|
|
int a[MAXN] , cnt ;
|
|
int Root[MAXN] ;
|
|
int N , M , X , P ;
|
|
LL Pre ;
|
|
int unique ( int a[] , int n ) {
|
|
int cnt = 1 ;
|
|
sort ( a + 1 , a + n + 1 ) ;
|
|
FOR ( i , 2 , n )
|
|
if ( a[i] != a[cnt] )
|
|
a[++ cnt] = a[i] ;
|
|
return cnt ;
|
|
}
|
|
int lower_bound ( int key ) {
|
|
int l = 1 , r = cnt + 1 ;
|
|
while ( l < r ) {
|
|
int m = mid () ;
|
|
if ( a[m] >= key )
|
|
r = m ;
|
|
else
|
|
l = m + 1 ;
|
|
}
|
|
return l ;
|
|
}
|
|
int newnode () {
|
|
return ++ idx ;
|
|
}
|
|
void build ( int &o , int l , int r ) {
|
|
o = newnode () ;
|
|
T[o].c = 0 ;
|
|
T[o].val = 0 ;
|
|
if ( l == r )
|
|
return ;
|
|
int m = mid () ;
|
|
build ( T[o].Ls , l , m ) ;
|
|
build ( T[o].Rs , m + 1 , r ) ;
|
|
}
|
|
int insert ( int old , int pos , int val , int c ) {
|
|
int root = newnode () ;
|
|
int now = root ;
|
|
int l = 1 , r = cnt ;
|
|
T[now].c = T[old].c + c ;
|
|
T[now].val = T[old].val + val ;
|
|
while ( l < r ) {
|
|
int m = mid () ;
|
|
if ( pos <= m ) {
|
|
T[now].Ls = newnode () ;
|
|
T[now].Rs = T[old].Rs ;
|
|
now = T[now].Ls ;
|
|
old = T[old].Ls ;
|
|
r = m ;
|
|
}
|
|
else {
|
|
T[now].Ls = T[old].Ls ;
|
|
T[now].Rs = newnode () ;
|
|
now = T[now].Rs ;
|
|
old = T[old].Rs ;
|
|
l = m + 1 ;
|
|
}
|
|
T[now].c = T[old].c + c ;
|
|
T[now].val = T[old].val + val ;
|
|
}
|
|
return root ;
|
|
}
|
|
LL query ( int now , int kth ) {
|
|
LL ans = 0 ;
|
|
int l = 1 , r = cnt ;
|
|
while ( l < r ) {
|
|
int m = mid () ;
|
|
if ( kth <= T[T[now].Ls].c ) {
|
|
now = T[now].Ls ;
|
|
r = m ;
|
|
}
|
|
else {
|
|
ans += T[T[now].Ls].val ;
|
|
kth -= T[T[now].Ls].c ;
|
|
now = T[now].Rs ;
|
|
l = m + 1 ;
|
|
}
|
|
}
|
|
if ( T[now].c && kth )
|
|
ans += T[now].val / T[now].c * kth ;
|
|
return ans ;
|
|
}
|
|
void init () {
|
|
cntE = 0 ;
|
|
CLR ( H , -1 ) ;
|
|
}
|
|
void addedge ( int x , int h , int c ) {
|
|
E[cntE] = Edge ( h , c , H[x] ) ;
|
|
H[x] = cntE ++ ;
|
|
}
|
|
void solve () {
|
|
int l , r , h ;
|
|
init () ;
|
|
idx = 0 ;
|
|
cnt = 0 ;
|
|
Pre = 1 ;
|
|
FOR ( i , 1 , N ) {
|
|
scanf ( "%d%d%d" , &l , &r , &h ) ;
|
|
addedge ( l , h , 1 ) ;
|
|
addedge ( r + 1 , h , -1 ) ;
|
|
a[++ cnt] = h ;
|
|
}
|
|
cnt = unique ( a , cnt ) ;
|
|
build ( Root[0] , 1 , cnt ) ;
|
|
FOR ( x , 1 , X ) {
|
|
if ( ~H[x] ) {
|
|
int flag = 0 ;
|
|
for ( int i = H[x] ; ~i ; i = E[i].n ) {
|
|
h = E[i].h ;
|
|
if ( !flag ) {
|
|
Root[x] = insert ( Root[x - 1] , lower_bound ( h ) , E[i].c * h , E[i].c ) ;
|
|
flag = 1 ;
|
|
}
|
|
else
|
|
Root[x] = insert ( Root[x] , lower_bound ( h ) , E[i].c * h , E[i].c ) ;
|
|
}
|
|
}
|
|
else {
|
|
Root[x] = newnode () ;
|
|
T[Root[x]] = T[Root[x - 1]] ;
|
|
}
|
|
}
|
|
int pos , a , b , c ;
|
|
REP ( i , M ) {
|
|
scanf ( "%d%d%d%d" , &pos , &a , &b , &c ) ;
|
|
int kth = ( a * Pre + b ) % c ;
|
|
LL score = query ( Root[pos] , kth ) ;
|
|
if ( Pre > P )
|
|
score <<= 1 ;
|
|
printf ( "%I64d\n" , score ) ;
|
|
Pre = score ;
|
|
}
|
|
}
|
|
int main () {
|
|
while ( ~scanf ( "%d%d%d%d" , &N , &M , &X , &P ) )
|
|
solve () ;
|
|
return 0 ;
|
|
}
|