1
0
mirror of https://github.com/Kiritow/OJ-Problems-Source.git synced 2024-03-22 13:11:29 +08:00
OJ-Problems-Source/HDOJ/5134_autoAC.cpp
2016-09-10 11:37:56 +08:00

115 lines
3.5 KiB
C++

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<string>
#include<queue>
#include<cmath>
#include<stack>
#include<set>
#include<map>
#define FIR first
#define SEC second
#define MP make_pair
#define inf 0x3f3f3f3f
#define LL long long
#define CLR(a, b) memset(a, b, sizeof(a))
using namespace std;
struct Point
{
double x, y;
Point(double x = 0, double y = 0)
:x(x), y(y) {}
};
double EP = 0;
double x_mult(Point sp, Point ep, Point op){
return (sp.x-op.x)*(ep.y-op.y)-(sp.y-op.y)*(ep.x-op.x);
}
double cross(Point a,Point b,Point c){
return (a.x-c.x)*(b.x-c.x)+(a.y-c.y)*(b.y-c.y);
}
double dist(Point a,Point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double cal_area(Point a,Point b,Point c,double r){
double A,B,C,x,y,tS;
A=dist(b,c);
B=dist(a,c);
C=dist(b,a);
if(A<r&&B<r)
return x_mult(a,b,c)/2;
else if(A<r&&B>=r){
x=(cross(a,c,b)+sqrt(r*r*C*C-x_mult(a,c,b)*x_mult(a,c,b)))/C;
tS=x_mult(a,b,c)/2;
return asin(tS*(1-x/C)*2/r/B*(1-EP))*r*r/2+tS*x/C;
}
else if(A>=r&&B<r){
y=(cross(b,c,a)+sqrt(r*r*C*C-x_mult(b,c,a)*x_mult(b,c,a)))/C;
tS=x_mult(a,b,c)/2;
return asin(tS*(1-y/C)*2/r/A*(1-EP))*r*r/2+tS*y/C;
}
else if(fabs(x_mult(a,b,c))>=r*C||cross(b,c,a)<=0||cross(a,c,b)<=0){
if(cross(a,b,c)<0)
if(x_mult(a,b,c)<0)
return (-acos(-1.0)-asin(x_mult(a,b,c)/A/B*(1-EP)))*r*r/2;
else return (acos(-1.0)-asin(x_mult(a,b,c)/A/B*(1-EP)))*r*r/2;
else return asin(x_mult(a,b,c)/A/B*(1-EP))*r*r/2;
}
else{
x=(cross(a,c,b)+sqrt(r*r*C*C-x_mult(a,c,b)*x_mult(a,c,b)))/C;
y=(cross(b,c,a)+sqrt(r*r*C*C-x_mult(b,c,a)*x_mult(b,c,a)))/C;
tS=x_mult(a,b,c)/2;
return (asin(tS*(1-x/C)*2/r/B*(1-EP))+asin(tS*(1-y/C)*2/r/A*(1-EP)))*r*r/2+tS*((y+x)/C-1);
}
}
double solve(Point p[], int n, Point cir, double r){
double area=0;
for(int i=0;i<n;i++){
area+=cal_area(p[i], p[(i+1)%n], cir, r);
}
return area;
}
double pi = acos(-1.0);
int main()
{
double v0, v1, D, T;int cas = 1;
while(cin >> v0 >> v1 >> D >> T)
{
printf("Case %d: ", cas ++);
Point cir = Point(-D, 0);
double r = v0 * T;
if(v0 * T <= D)
{
printf("%.7f\n", pi * r * r);
continue;
}
double lft = D / v0, rgt = T;
for(int i = 0; i < 100; i ++)
{
double mid = (lft + rgt) / 2;
double midmid = (mid + rgt) / 2;
double _mid = sqrt((v0 * mid) * (v0 * mid) - D * D) + v1 * (T - mid);
double _midmid = sqrt((v0 * midmid) * (v0 * midmid) - D * D) + v1 * (T - midmid);
if(_mid > _midmid) rgt = midmid;
else lft = mid;
}
double t = (lft + rgt) / 2;
double y = sqrt((v0 * t) * (v0 * t) - D * D) + v1 * (T - t);
double x1 = T / t * D, y1 = sqrt(v0 * T * v0 * T - x1 * x1);
x1 -= D;
Point p[8];
p[0] = Point(0, y);
p[1] = Point(x1, y1);
p[2] = Point(x1, -y1);
p[3] = Point(0, -y);
p[4] = Point(-x1, -y1);
p[5] = Point(-x1, y1);
p[6] = p[0];
double ans = solve(p, 6, cir, r);
ans = pi * r * r + x1 * y1 * 4 + x1 * (y - y1) * 2 - fabs(ans);
printf("%.7f\n", ans);
}
}