OJ-Problems-Source/.ACM-Templates/TXTs/应用.txt

211 lines
6.7 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

//Joseph问题 O(n)
int Joseph(int n, int m, int s) {
int ret = s - 1;
for (int i = 2; i <= n; i++) { ret = (ret + m) % i; }
return ret + 1;
}
//O(logn) 0 <= k < n
int Joseph(int n, int m, int k) {
if (m == 1) { return n - 1; }
for (k = k * m + m - 1; k >= n; k = k - n + (k - n) / (m - 1));
return k;
}
//康托展开 fac[]为阶乘 0 <= ans
ll Cantor(char *s) {
ll ans = 0;
for (int i = 0, len = strlen(s); i < len; i++) {
int cnt = 0;
for (int j = i + 1; j < len; j++) { if (s[j] < s[i]) { cnt++; } }
ans += cnt * fac[len - i - 1];
}
return ans;
}
//康托展开逆运算 1 <= k <= n!
vector<int> revCantor(ll n, ll k) {
vector<int> v, ret; k--;
for (int i = 1; i <= n; i++) { v.push_back(i); }
for (int i = n; i >= 1; i--) {
ll t = k / fac[i - 1]; k %= fac[i - 1];
sort(v.begin(), v.end());
ret.push_back(v[t]); v.erase(v.begin() + t);
}
return ret;
}
//求最大的全为id的子矩形面积
//单调栈 O(nm)
int n, m, a[N][N], h[N];
int solve(int id) {
int ans = 0;
memset(h, 0, sizeof(h));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) { h[j] = a[i][j] == id ? h[j] + 1 : 0; }
stack<int> st; st.push(0);
for (int j = 1; j <= m + 1; j++) {
while (h[j] < h[st.top()]) {
int t = h[st.top()]; st.pop();
int w = j - st.top() - 1;
ans = max(ans, t * w);
}
st.push(j);
}
}
return ans;
}
//dp 悬线法 O(nm)
int n, m, a[N][N], l[N], r[N], h[N];
int solve(int id) {
int ans = 0;
for (int i = 1; i <= m; i++) { l[i] = 1; r[i] = m; h[i] = 0; }
for (int i = 1; i <= n; i++) {
for (int j = 1, mxl = 1; j <= m; j++) {
if (a[i][j] == id) { h[j]++; l[j] = max(l[j], mxl); }
else { h[j] = 0; l[j] = 1; r[j] = m; mxl = j + 1; }
}
for (int j = m, mxr = m; j >= 1; j--) {
if (a[i][j] == id) { r[j] = min(r[j], mxr); ans = max(ans, (r[j] - l[j] + 1) * h[j]); }
else { mxr = j - 1; }
}
}
return ans;
}
//二叉树前序 + 中序求后序遍历
void getPost(char *pre, char *in, int len) {
if (len == 0) { return; }
int root = 0;
for (; root < len && in[root] != *pre; root++);
getPost(pre + 1, in, root);
getPost(pre + root + 1, in + root + 1, len - root - 1);
putchar(*pre);
}
//求1到n之间1的个数
ll countOne(ll n) {
ll ret = 0;
for (ll m = 1; m <= n; m *= 10) {
ll a = n / m, b = n % m;
ret += (a + 8) / 10 * m + (a % 10 == 1) * (b + 1);
}
return ret;
}
//求1到n所有数字的数位和的和 数位DP
char t[N];
ll dp[N][N][N];
ll countDigit(char *s) {
ll ret = 0;
for (int i = 1, n = strlen(s); i <= n; i++) { t[i] = s[i - 1] - '0'; }
for (int i = 0; i <= t[1]; i++) { dp[1][i][i == t[1]] = 1; }
for (int i = 1; i < n; i++) {
for (int j = 1; j <= 900; j++) {
if (dp[i][j][0]) {
for (int k = 0; k <= 9; k++) { dp[i + 1][j + k][0] += dp[i][j][0]; dp[i + 1][j + k][0] %= M; }
}
if (dp[i][j][1]) {
for (int k = 0; k <= t[i + 1]; k++) { dp[i + 1][j + k][k == t[i + 1]] += dp[i][j][1]; dp[i + 1][j + k][k == t[i + 1]] %= M; }
}
}
}
for (int j = 1; j <= 900; j++) { ret += dp[n][j][0] * dp[n][j][1] % M; ret %= M; }
return ret;
}
//树hash
int hs[N], P[N]; //一些质数
void dfs(int u, int p) {
vector<int> t; t.push_back(1);
for (int i = 0; i < (int)e[u].size(); i++) {
int v = e[u][i];
if (v == p) { continue; }
dfs(v, u); t.push_back(hs[v]);
}
sort(t.begin(), t.end()); hs[u] = 0;
for (int i = 0; i < (int)t.size(); i++) { hs[u] += t[i] * P[i]; }
}
for (int j = 1; j <= n; j++) {
dfs(j, 0); //cout << j << ' ' << hs[j] << endl;
}
sort(hs[i] + 1, hs[i] + n + 1); //结果序列
//整数划分方案数 O(n^1.5)
int n, f[777] = {0, 1, 2, 5, 7}, g[N] = {1};
int main() {
for (int i = 5; i < 777; i++) { f[i] = 3 + 2 * f[i - 2] - f[i - 4]; }
while (~scanf("%d", &n)) {
for (int i = 1; i <= n; i++) {
for (int j = 1; f[j] <= i; j++) {
if ((j + 1) >> 1 & 1) { g[i] = (g[i] + g[i - f[j]]) % M; }
else { g[i] = ((g[i] - g[i - f[j]]) % M + M) % M; }
}
}
printf("%d\n", g[n]);
}
}
//所有区间gcd的预处理
int l[N], v[N];
void calGCD {
for (int i = 1, j; i <= n; i++) {
for (v[i] = a[i], j = l[i] = i; j; j = l[j] - 1) {
v[j] = __gcd(v[j], a[i]);
while (l[j] > 1 && __gcd(a[i], v[l[j] - 1]) == __gcd(a[i], v[j])) { l[j] = l[l[j] - 1]; }
//[l[j]...j, i]区间内的值求gcd均为v[j]
}
}
}
//小数转化为分数
//把小数转化为分数, 循环部分用()表示
void work(char str[]) {
int len = strlen(str), cnt1 = 0, cnt2 = 0;
ll a = 0, b = 0; bool flag = false;
for (int i = 2; i < len; i++) {
if (str[i] == '(') { break; }
a = a * 10 + str[i] - '0'; cnt1++;
}
for (int i = 2; i < len; i++) {
if (str[i] == '(' || str[i] == ')') { flag = true; continue; }
b = b * 10 + str[i] - '0'; cnt2++;
}
ll p = b - a, q = 0; cnt2 -= cnt1;
if (!flag) { p = b; q = 1; cnt2 = 0; }
for (int i = 0; i < cnt2; i++) { q = q * 10 + 9; }
for (int i = 0; i < cnt1; i++) { q = q * 10; }
ll g = gcd(p, q);
printf("%I64d/%I64d\n", p / g, q / g);
}
//分数转化为小数
//定理: 有理数a / b(其中0 < a < b(a, b) = 1)能表示成纯循环小数的充要条件是(b, 10) = 1
//定理: 有理数a / b, 0 < a < b, (a, b) = 1, b = (2 ^ α) * (5 ^ β) * b1, (b1, 10) = 1,
// b1不等于1αβ不全为零则a / b可以表示为纯循环小数其不循环的位数为u = max(α, β)
void work(int n) {
bool flag = false;
int ans[N] = { 0 }, f[N] = { 0, 1 }, k = 1, cnt = 0;
if (n < 0) { n = -n; flag = 1; }
while (k && n != 1) {
k *= 10; ans[cnt++] = k / n; k %= n;
if (f[k]) { break; }
f[k] = 1;
}
if (flag) { printf("-"); }
if (n == 1) { puts("1"); }
else {
printf("0.");
for (int i = 0; i < cnt; i++) { printf("%d", ans[i]); }
puts("");
}
}
//水仙花数 A023052 Powerful numbers(3): numbers n that are the sum of some fixed power of their digits.
int Nar[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084,
194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477
};
//完数 A000396 Perfect numbers n: n is equal to the sum of the proper divisors of n.
string str[] = {
"6",
"28",
"496",
"8128",
"33550336",
"8589869056",
"137438691328",
"2305843008139952128",
"2658455991569831744654692615953842176",
"191561942608236107294793378084303638130997321548169216",
"13164036458569648337239753460458722910223472318386943117783728128",
"14474011154664524427946373126085988481573677491474835889066354349131199152128",
"23562723457267347065789548996709904988477547858392600710143027597506337283178622239730365539602600561360255566462503270175052892578043215543382498428777152427010394496918664028644534128033831439790236838624033171435922356643219703101720713163527487298747400647801939587165936401087419375649057918549492160555646976"
};