mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
1d53c6ce3d
4000-4099
291 lines
7.4 KiB
C++
291 lines
7.4 KiB
C++
#include <set>
|
|
#include <queue>
|
|
#include <stack>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <iostream>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#include <string>
|
|
#include <algorithm>
|
|
#define MID(x,y) ( ( x + y ) >> 1 )
|
|
#define L(x) ( x << 1 )
|
|
#define R(x) ( x << 1 | 1 )
|
|
#define FOR(i,s,t) for(int i=(s); i<(t); i++)
|
|
#define BUG puts("here!!!")
|
|
#define STOP system("pause")
|
|
#define file_r(x) freopen(x, "r", stdin)
|
|
#define file_w(x) freopen(x, "w", stdout)
|
|
using namespace std;
|
|
const int MAX = 1000;
|
|
const double eps = 1e-6;
|
|
const double inf = 1e50;
|
|
struct point{
|
|
double x, y;
|
|
void get()
|
|
{
|
|
scanf("%lf%lf", &x, &y);
|
|
}
|
|
};
|
|
bool dy(double x,double y) { return x > y + eps;}
|
|
bool xy(double x,double y) { return x < y - eps;}
|
|
bool dyd(double x,double y) { return x > y - eps;}
|
|
bool xyd(double x,double y) { return x < y + eps;}
|
|
bool dd(double x,double y) { return fabs( x - y ) < eps;}
|
|
double disp2p(point a,point b)
|
|
{
|
|
return sqrt( ( a.x - b.x ) * ( a.x - b.x ) + ( a.y - b.y ) * ( a.y - b.y ) );
|
|
}
|
|
bool operator==(point a, point b)
|
|
{
|
|
return dd(a.x, b.x) && dd(a.y, b.y);
|
|
}
|
|
typedef struct NODE{
|
|
int to;
|
|
double len;
|
|
NODE *next;
|
|
}NODE;
|
|
NODE *p[MAX],node[MAX*MAX];
|
|
struct circle{
|
|
point c;
|
|
double r;
|
|
};
|
|
circle c[MAX];
|
|
int cou;
|
|
void init()
|
|
{
|
|
cou = 0;
|
|
memset(p, 0, sizeof(p));
|
|
}
|
|
void Add(int from,int to,double len)
|
|
{
|
|
node[cou].next = p[from];
|
|
node[cou].to = to;
|
|
node[cou].len = len;
|
|
p[from] = &node[cou++];
|
|
}
|
|
queue<int> q;
|
|
double SPFA_List(int from,int to,int n)
|
|
{
|
|
while( !q.empty() ) q.pop();
|
|
double dis[MAX];
|
|
bool inq[MAX];
|
|
for(int i=0; i<n; i++)
|
|
dis[i] = inf;
|
|
memset(inq,false,sizeof(inq));
|
|
dis[from] = 0;
|
|
q.push(from);
|
|
inq[from] = 1;
|
|
while( !q.empty() )
|
|
{
|
|
int now = q.front();
|
|
q.pop();
|
|
inq[now] = false;
|
|
NODE *head = p[now];
|
|
while( head != NULL )
|
|
{
|
|
int v = head->to;
|
|
double len = head->len;
|
|
if( dy(dis[v], dis[now] + len) )
|
|
{
|
|
dis[v] = dis[now] + len;
|
|
if( !inq[v] )
|
|
{
|
|
inq[v] = true;
|
|
q.push(v);
|
|
}
|
|
}
|
|
head = head->next;
|
|
}
|
|
}
|
|
if( dd(dis[to], inf) ) return -1;
|
|
return dis[to];
|
|
}
|
|
point l2l_inst_p(point u1,point u2,point v1,point v2)
|
|
{
|
|
point ans = u1;
|
|
double t = ((u1.x - v1.x)*(v1.y - v2.y) - (u1.y - v1.y)*(v1.x - v2.x))/
|
|
((u1.x - u2.x)*(v1.y - v2.y) - (u1.y - u2.y)*(v1.x - v2.x));
|
|
ans.x += (u2.x - u1.x)*t;
|
|
ans.y += (u2.y - u1.y)*t;
|
|
return ans;
|
|
}
|
|
void l2c_inst_p(point c,double r,point l1,point l2,point &p1,point &p2)
|
|
{
|
|
point p = c;
|
|
double t;
|
|
p.x += l1.y - l2.y;
|
|
p.y += l2.x - l1.x;
|
|
p = l2l_inst_p(p,c,l1,l2);
|
|
t = sqrt(r*r - disp2p(p,c)*disp2p(p,c))/disp2p(l1,l2);
|
|
p1.x = p.x + (l2.x - l1.x)*t;
|
|
p1.y = p.y + (l2.y - l1.y)*t;
|
|
p2.x = p.x - (l2.x - l1.x)*t;
|
|
p2.y = p.y - (l2.y - l1.y)*t;
|
|
}
|
|
void c2c_inst_p(point c1,double r1,point c2,double r2,point &p1,point &p2)
|
|
{
|
|
point u,v;
|
|
double t;
|
|
t = (1 + (r1*r1 - r2*r2)/disp2p(c1,c2)/disp2p(c1,c2))/2;
|
|
u.x = c1.x + (c2.x - c1.x)*t;
|
|
u.y = c1.y + (c2.y - c1.y)*t;
|
|
v.x = u.x + c1.y - c2.y;
|
|
v.y = u.y - c1.x + c2.x;
|
|
l2c_inst_p(c1,r1,u,v,p1,p2);
|
|
}
|
|
bool c2c_tangent(point a,double r1,point b,double r2)
|
|
{
|
|
if( dd(disp2p(a,b),r1+r2) || dd(disp2p(a,b),fabs(r1-r2)) )
|
|
return true;
|
|
return false;
|
|
}
|
|
point c2c_tangent_p(point a,double r1,point b,double r2)
|
|
{
|
|
point t;
|
|
if( dd(disp2p(a,b),r1 + r2) )
|
|
{
|
|
t.x = (r1*b.x + r2*a.x)/(r1 + r2);
|
|
t.y = (r1*b.y + r2*a.y)/(r1 + r2);
|
|
return t;
|
|
}
|
|
t.x = (r1*b.x - r2*a.x)/(r1 - r2);
|
|
t.y = (r1*b.y - r2*a.y)/(r1 - r2);
|
|
return t;
|
|
}
|
|
point g[MAX];
|
|
bool f[MAX][MAX];
|
|
double crossProduct(point a,point b,point c)
|
|
{
|
|
return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y);
|
|
}
|
|
double disp2l(point a,point l1,point l2)
|
|
{
|
|
return fabs( crossProduct(a,l1,l2) )/disp2p(l1,l2);
|
|
}
|
|
bool onSegment(point a, point b, point c)
|
|
{
|
|
if( dd(crossProduct(a,b,c),0.0) && dyd(c.x,min(a.x,b.x)) &&
|
|
xyd(c.x,max(a.x,b.x)) && dyd(c.y,min(a.y,b.y)) && xyd(c.y,max(a.y,b.y)) )
|
|
return true;
|
|
return false;
|
|
}
|
|
bool cmp(point a, point b)
|
|
{
|
|
if( dd(a.x, b.x) ) return xy(a.y, b.y);
|
|
return xy(a.x, b.x);
|
|
}
|
|
point tp[MAX];
|
|
bool check(int cnt, int n)
|
|
{
|
|
FOR(i, 1, cnt)
|
|
{
|
|
point tt;
|
|
tt.x = (tp[i].x + tp[i-1].x)/2;
|
|
tt.y = (tp[i].y + tp[i-1].y)/2;
|
|
bool f = false;
|
|
FOR(k, 0, n)
|
|
if( xyd(disp2p(c[k].c, tt), c[k].r) )
|
|
{
|
|
f = true;
|
|
break;
|
|
}
|
|
if( !f )
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
double solve(int n)
|
|
{
|
|
int l = 0;
|
|
int s = 0, t = n-1;
|
|
FOR(i, 0, n)
|
|
g[l++] = c[i].c;
|
|
FOR(i, 0, n)
|
|
{
|
|
FOR(k, i+1, n)
|
|
{
|
|
if( dy(disp2p(c[i].c, c[k].c), c[i].r + c[k].r)
|
|
|| c[i].c == c[k].c )
|
|
continue;
|
|
if( c2c_tangent(c[i].c, c[i].r, c[k].c, c[k].r) )
|
|
{
|
|
point tt = c2c_tangent_p(c[i].c, c[i].r, c[k].c, c[k].r);
|
|
g[l++] = tt;
|
|
continue;
|
|
}
|
|
point t1, t2;
|
|
c2c_inst_p(c[i].c, c[i].r, c[k].c, c[k].r, t1, t2);
|
|
g[l++] = t1;
|
|
g[l++] = t2;
|
|
}
|
|
}
|
|
memset(f, false, sizeof(f));
|
|
int tmp[MAX];
|
|
FOR(i, 0, n)
|
|
{
|
|
int cnt = 0;
|
|
FOR(k, 0, l)
|
|
if( xyd(disp2p(c[i].c, g[k]), c[i].r) )
|
|
tmp[cnt++] = k;
|
|
FOR(k, 0, cnt)
|
|
FOR(j, k+1, cnt)
|
|
{
|
|
int x = tmp[k], y = tmp[j];
|
|
if( f[x][y] ) continue;
|
|
double dis = disp2p(g[x], g[y]);
|
|
Add(x, y, dis);
|
|
Add(y, x, dis);
|
|
f[x][y] = f[y][x] = true;
|
|
}
|
|
}
|
|
FOR(i, 0, l)
|
|
FOR(k, i+1, l)
|
|
{
|
|
if( f[i][k] ) continue;
|
|
int cnt = 0;
|
|
tp[cnt++] = g[i];
|
|
tp[cnt++] = g[k];
|
|
FOR(j, 0, n)
|
|
if( xyd(disp2l(c[j].c, g[i], g[k]),c[j].r) )
|
|
{
|
|
point t1, t2;
|
|
l2c_inst_p(c[j].c, c[j].r, g[i], g[k], t1, t2);
|
|
if( onSegment(g[i], g[k], t1) )
|
|
tp[cnt++] = t1;
|
|
if( onSegment(g[i], g[k], t2) )
|
|
tp[cnt++] = t2;
|
|
}
|
|
sort(tp, tp+cnt, cmp);
|
|
if( check(cnt, n) )
|
|
{
|
|
Add(i, k, disp2p(g[i], g[k]));
|
|
Add(k, i, disp2p(g[k], g[i]));
|
|
}
|
|
}
|
|
return SPFA_List(s, t, l);
|
|
}
|
|
int main()
|
|
{
|
|
int ncases, n, ind = 1;
|
|
scanf("%d", &ncases);
|
|
while( ncases-- )
|
|
{
|
|
scanf("%d", &n);
|
|
init();
|
|
FOR(i, 0, n)
|
|
{
|
|
c[i].c.get();
|
|
scanf("%lf", &c[i].r);
|
|
}
|
|
double ans = solve(n);
|
|
printf("Case %d: ",ind++);
|
|
if( ans < -eps )
|
|
puts("No such path.");
|
|
else
|
|
printf("%.4lf\n", ans);
|
|
}
|
|
return 0;
|
|
}
|