/// General includes #include #include #include #include using namespace std; /// 最基础的线段树: 单点更新,区间运算(求和) namespace SegmentTree { const int MAXN = 1000100; const int MAXTREENODE = MAXN<<2; struct node { int lt,rt; int val; }; node tree[MAXTREENODE]; /// _internal_v is a indexer of SegmentTree. It guides the procedure to the right node. void build(int L,int R,int _internal_v=1) /// Build a tree, _internal_v is 1 by default. { tree[_internal_v].lt=L; tree[_internal_v].rt=R; if(L==R) { scanf("%d",&tree[_internal_v].val); /// Or: tree[_internal].val = VAL_BY_DEFAULT return; } int mid=(L+R)>>1; build(L,mid,_internal_v<<1); build(mid+1,R,_internal_v<<1|1);/// x<<1 == x*2; x<<1|1 == x*2+1; (faster == slower) /// SegmentTree Main Algorithm tree[_internal_v].val=tree[_internal_v<<1].val+tree[_internal_v<<1|1].val; } void update(int Pos,int Val,int _internal_v=1)/// Update a position, _internal_v is 1 by default. { if(tree[_internal_v].lt==tree[_internal_v].rt) { tree[_internal_v].val=Val; return; } /// Update Deep-Loop if(Pos <= tree[_internal_v<<1].rt) update(Pos,Val,_internal_v<<1); if(Pos >= tree[_internal_v<<1|1].lt) update(Pos,Val,_internal_v<<1|1); /// SegmentTree Main Algorithm tree[_internal_v].val = tree[_internal_v<<1].val+tree[_internal_v<<1|1].val; } int _internal_ans; inline void _internal_clear_ans() { _internal_ans=0; } inline int _internal_get_ans() { return _internal_ans; } void basic_query(int L,int R,int _internal_v=1)/// Query A Segment [L,R] , _internal_v is 1 by default. { if(tree[_internal_v].lt >= L && tree[_internal_v].rt <= R) { _internal_ans+=tree[_internal_v].val; return; } if(L <= tree[_internal_v<<1].rt) basic_query(L,R,_internal_v<<1); if(R >= tree[_internal_v<<1|1].lt) basic_query(L,R,_internal_v<<1|1); } int query(int L,int R) { _internal_clear_ans(); basic_query(L,R); return _internal_get_ans(); } }/// End of namespace SegmentTree /// 延迟更新: 区间运算更新(加法), 区间运算(求和) namespace LazySegmentTree { const int MAXN = 100100; const int MAXTREENODE = MAXN << 2; struct node { int lt,rt; int val; int add; }; node tree[MAXTREENODE]; void _internal_PushUp(int _indexer) { tree[_indexer].val=tree[_indexer<<1].val+tree[_indexer<<1|1].val; } void _internal_PushDown(int _indexer) { if(tree[_indexer].add!=0) { /// Broadcast this add value to Left and Right sub-tree node. tree[_indexer<<1].add+=tree[_indexer].add; tree[_indexer<<1|1].add+=tree[_indexer].add; /// Confirm this change by calculate and add changes to sub-trees. tree[_indexer<<1].val+=tree[_indexer].add * (tree[_indexer<<1].rt-tree[_indexer<<1].lt+1); tree[_indexer<<1|1].val+=tree[_indexer].add *(tree[_indexer<<1|1].rt-tree[_indexer<<1|1].lt+1); /// Now Clear this node's add value. tree[_indexer].add=0; } } void build(int L,int R,int _indexer=1) { tree[_indexer].lt=L; tree[_indexer].rt=R; tree[_indexer].add=0;/// This must be set to 0. if(L==R) { //scanf("%d",&tree[_indexer].val); tree[_indexer].val = 0; return; } int mid=(L+R)>>1; build(L,mid,_indexer<<1); build(mid+1,R,_indexer<<1|1); /// Update this val from down to up. (>.<) _internal_PushUp(_indexer); } void update(int L,int R,int ValToAdd,int _indexer=1) { /// Return when L or R exceeds range. So smart ! if(Rtree[_indexer].rt) return; if(L<=tree[_indexer].lt&&R>=tree[_indexer].rt) { /// This range is covered. So just add the 'add' value, which is called "LAZY" tree[_indexer].add+=ValToAdd; tree[_indexer].val+=ValToAdd*(tree[_indexer].rt-tree[_indexer].lt+1); return; } _internal_PushDown(_indexer); /// This ... Hum.. Seems not so clever... update(L,R,ValToAdd,_indexer<<1); update(L,R,ValToAdd,_indexer<<1|1); _internal_PushUp(_indexer); } int ans; void basic_query(int L,int R,int _indexer=1) { /// Data to find is not in this range. if(Rtree[_indexer].rt) return; /// Data to find is right in this range , or covers this range. if(L<=tree[_indexer].lt&&R>=tree[_indexer].rt) { ans+=tree[_indexer].val; return ; } _internal_PushDown(_indexer); int mid=(tree[_indexer].lt+tree[_indexer].rt)>>1; if(R<=mid) basic_query(L,R,_indexer<<1); else if(L>mid) basic_query(L,R,_indexer<<1|1); else { basic_query(L,mid,_indexer<<1); basic_query(mid+1,R,_indexer<<1|1); } } int query(int L,int R) { ans=0; basic_query(L,R); return ans; } }/// End of namespace LazySegmentTree /// 延迟更新: 区间赋值更新, 区间运算(求和) namespace AttributeSegmentTree { const int MAXN = 100100; const int MAXTREENODE = MAXN << 2; const int ATTR_BY_DEFAULT=1;///默认初始化属性 struct node { int lt,rt; int attr; }; node tree[MAXTREENODE]; void build(int L,int R,int _indexer=1) { tree[_indexer].lt=L; tree[_indexer].rt=R; tree[_indexer].attr=ATTR_BY_DEFAULT; if(L!=R) { int mid=(L+R)>>1; build(L,mid,_indexer<<1); build(mid+1,R,_indexer<<1|1); } } void update(int L,int R,int NewAttr,int _indexer=1) { if(tree[_indexer].attr==NewAttr) return; /// Same Attribute. Don't Need Change. if(tree[_indexer].lt==L&&tree[_indexer].rt==R) { /// Right this segment. Update. tree[_indexer].attr=NewAttr; return; } /// This segment has only 1 attribute. New attribute is different. /// So change this segment's manager's attribute to -1 ( Different Attribute in this segment ) if(tree[_indexer].attr!=-1) { tree[_indexer<<1].attr=tree[_indexer<<1|1].attr=tree[_indexer].attr; tree[_indexer].attr=-1; } /// If This segment has already had several attributes, operate its subtree by Deep-Loop. int mid=(tree[_indexer].lt+tree[_indexer].rt)>>1; if(L>mid) { update(L,R,NewAttr,_indexer<<1|1); } else if(R<=mid) { update(L,R,NewAttr,_indexer<<1); } else { update(L,mid,NewAttr,_indexer<<1); update(mid+1,R,NewAttr,_indexer<<1|1); } } #define ValueOfAttr(Attr) (Attr) int AttrSumUp(int _indexer=1) { if(tree[_indexer].attr!=-1) { return ValueOfAttr(tree[_indexer].attr)*(tree[_indexer].rt-tree[_indexer].lt+1); } else { return AttrSumUp(_indexer<<1)+AttrSumUp(_indexer<<1|1); } } }/// End of namespace AttributeSegmentTree /// 区间赋值更新, 区间合并, 查找左端 namespace AttributeMergeSegmentTree { const int MAXN = 100100; const int MAXTREENODE = MAXN << 3; const int ATTR_BY_DEFAULT=-1;///默认初始化属性 -1 无需操作 0 子树有住户离开 1 子树有住户进入 struct node { int lt,rt; int lsum,rsum,sum; int attr; }; node tree[MAXTREENODE]; void build(int L,int R,int _indexer=1) { tree[_indexer].lt=L; tree[_indexer].rt=R; tree[_indexer].attr=ATTR_BY_DEFAULT; tree[_indexer].lsum=tree[_indexer].rsum=tree[_indexer].sum=R-L+1; if(L!=R) { int mid=(L+R)>>1; build(L,mid,_indexer<<1); build(mid+1,R,_indexer<<1|1); } } void update(int L,int R,int NewAttr,int _indexer=1) { if(L==tree[_indexer].lt&&R==tree[_indexer].rt) { tree[_indexer].lsum=tree[_indexer].rsum=tree[_indexer].sum= NewAttr==1 ? 0 : tree[_indexer].rt-tree[_indexer].lt+1 ; /// Same as R-L+1 tree[_indexer].attr=NewAttr; return; } /// Push Down (updated) if(tree[_indexer].attr!=-1) { /// Sync the Attribute to sub-tree tree[_indexer<<1].attr=tree[_indexer<<1|1].attr=tree[_indexer].attr; tree[_indexer].attr=-1; tree[_indexer<<1].rsum=tree[_indexer<<1].lsum=tree[_indexer<<1].sum= tree[_indexer<<1].attr==1 ? 0 : tree[_indexer<<1].rt-tree[_indexer<<1].lt+1; tree[_indexer<<1|1].rsum=tree[_indexer<<1|1].lsum=tree[_indexer<<1|1].sum= tree[_indexer<<1|1].attr==1 ? 0 : tree[_indexer<<1|1].rt-tree[_indexer<<1|1].lt+1; } int mid=(tree[_indexer].lt+tree[_indexer].rt)>>1; if(R<=mid) { update(L,R,NewAttr,_indexer<<1); } else if(L>mid) { update(L,R,NewAttr,_indexer<<1|1); } else { update(L,mid,NewAttr,_indexer<<1); update(mid+1,R,NewAttr,_indexer<<1|1); } /// Push Up (updated) tree[_indexer].lsum=tree[_indexer<<1].lsum; /// left & left tree[_indexer].rsum=tree[_indexer<<1|1].rsum; /// right & right if(tree[_indexer<<1].lsum == tree[_indexer<<1].rt-tree[_indexer].lt+1) { /// Father.LeftSum == RightSon.LeftSum + LeftSon.LeftSum tree[_indexer].lsum+=tree[_indexer<<1|1].lsum; } /// Why tree[_indexer].rsum but not tree[_indexer<<1|1].rsum ??? if(tree[_indexer].rsum==tree[_indexer<<1|1].rt-tree[_indexer<<1|1].lt+1) { /// Father.RightSum == LeftSon.RightSum + RightSon.RightSum tree[_indexer].rsum+=tree[_indexer<<1].rsum; } tree[_indexer].sum=max(max(tree[_indexer<<1].sum,tree[_indexer<<1|1].sum),tree[_indexer<<1].rsum+tree[_indexer<<1|1].lsum); } int query(int Val,int _indexer=1) { if(tree[_indexer].lt==tree[_indexer].rt) { return tree[_indexer].lt; } /// Push Down (updated) if(tree[_indexer].attr!=-1) { /// Sync the Attribute to sub-tree tree[_indexer<<1].attr=tree[_indexer<<1|1].attr=tree[_indexer].attr; tree[_indexer].attr=-1; tree[_indexer<<1].rsum=tree[_indexer<<1].lsum=tree[_indexer<<1].sum= tree[_indexer<<1].attr==1 ? 0 : tree[_indexer<<1].rt-tree[_indexer<<1].lt+1; tree[_indexer<<1|1].rsum=tree[_indexer<<1|1].lsum=tree[_indexer<<1|1].sum= tree[_indexer<<1|1].attr==1 ? 0 : tree[_indexer<<1|1].rt-tree[_indexer<<1|1].lt+1; } int Mid=(tree[_indexer].rt+tree[_indexer].lt)>>1; /// Left if(tree[_indexer<<1].sum>=Val) { return query(Val,_indexer<<1); } /// Both Left and Right else if(tree[_indexer<<1].rsum+tree[_indexer<<1|1].lsum >= Val) { return Mid-tree[_indexer<<1].rsum+1; } else /// Right { return query(Val,_indexer<<1|1); } } }/// End of namespace AttributeMergeSegmentTree