mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
Create 1394.cpp
This commit is contained in:
parent
4240624ca3
commit
d503808bc0
137
HDOJ/1394.cpp
Normal file
137
HDOJ/1394.cpp
Normal file
|
@ -0,0 +1,137 @@
|
||||||
|
/// HDU 1394
|
||||||
|
|
||||||
|
/// General includes
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <cstring>
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
///求数列逆序数
|
||||||
|
inline int GetInversionNumberOfSequence(int* seq,int len)
|
||||||
|
{
|
||||||
|
int ans=0;
|
||||||
|
for(int i=0;i<len-1;i++)
|
||||||
|
{
|
||||||
|
for(int j=i;j<len;j++)
|
||||||
|
{
|
||||||
|
if(seq[i]>seq[j])ans++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return ans;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/// 最基础的线段树: 单点更新,区间运算(求和)
|
||||||
|
namespace SegmentTree
|
||||||
|
{
|
||||||
|
|
||||||
|
const int MAXN = 1000100;
|
||||||
|
const int MAXTREENODE = MAXN<<2;
|
||||||
|
|
||||||
|
struct node
|
||||||
|
{
|
||||||
|
int lt,rt;
|
||||||
|
int val;
|
||||||
|
};
|
||||||
|
|
||||||
|
node tree[MAXTREENODE];
|
||||||
|
|
||||||
|
/// _internal_v is a indexer of SegmentTree. It guides the procedure to the right node.
|
||||||
|
|
||||||
|
void build(int L,int R,int _internal_v=1) /// Build a tree, _internal_v is 1 by default.
|
||||||
|
{
|
||||||
|
tree[_internal_v].lt=L;
|
||||||
|
tree[_internal_v].rt=R;
|
||||||
|
if(L==R)
|
||||||
|
{
|
||||||
|
///scanf("%d",&tree[_internal_v].val);
|
||||||
|
tree[_internal_v].val = 0;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
int mid=(L+R)>>1;
|
||||||
|
build(L,mid,_internal_v<<1);
|
||||||
|
build(mid+1,R,_internal_v<<1|1);/// x<<1 == x*2; x<<1|1 == x*2+1; (faster == slower)
|
||||||
|
/// SegmentTree Main Algorithm
|
||||||
|
tree[_internal_v].val=tree[_internal_v<<1].val+tree[_internal_v<<1|1].val;
|
||||||
|
}
|
||||||
|
|
||||||
|
void update(int Pos,int _internal_v=1)/// Update a position, _internal_v is 1 by default.
|
||||||
|
{
|
||||||
|
if(tree[_internal_v].lt==tree[_internal_v].rt)
|
||||||
|
{
|
||||||
|
tree[_internal_v].val=1;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
/// Update Deep-Loop
|
||||||
|
if(Pos <= tree[_internal_v<<1].rt) update(Pos,_internal_v<<1);
|
||||||
|
if(Pos >= tree[_internal_v<<1|1].lt) update(Pos,_internal_v<<1|1);
|
||||||
|
/// SegmentTree Main Algorithm
|
||||||
|
tree[_internal_v].val = tree[_internal_v<<1].val+tree[_internal_v<<1|1].val;
|
||||||
|
}
|
||||||
|
|
||||||
|
int _internal_ans;
|
||||||
|
inline void _internal_clear_ans()
|
||||||
|
{
|
||||||
|
_internal_ans=0;
|
||||||
|
}
|
||||||
|
inline int _internal_get_ans()
|
||||||
|
{
|
||||||
|
return _internal_ans;
|
||||||
|
}
|
||||||
|
void basic_query(int L,int R,int _internal_v=1)/// Query A Segment [L,R] , _internal_v is 1 by default.
|
||||||
|
{
|
||||||
|
if(tree[_internal_v].lt >= L && tree[_internal_v].rt <= R)
|
||||||
|
{
|
||||||
|
_internal_ans+=tree[_internal_v].val;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if(L <= tree[_internal_v<<1].rt) basic_query(L,R,_internal_v<<1);
|
||||||
|
if(R >= tree[_internal_v<<1|1].lt) basic_query(L,R,_internal_v<<1|1);
|
||||||
|
}
|
||||||
|
|
||||||
|
int query(int L,int R)
|
||||||
|
{
|
||||||
|
_internal_clear_ans();
|
||||||
|
basic_query(L,R);
|
||||||
|
return _internal_get_ans();
|
||||||
|
}
|
||||||
|
|
||||||
|
}/// End of namespace SegmentTree
|
||||||
|
|
||||||
|
const int MAXN = 5005;
|
||||||
|
int a[MAXN];
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
using namespace SegmentTree;
|
||||||
|
int n;
|
||||||
|
while(scanf("%d",&n)==1)
|
||||||
|
{
|
||||||
|
build(1,n);
|
||||||
|
int TSum=0;
|
||||||
|
for(int i=0;i<n;i++)
|
||||||
|
{
|
||||||
|
scanf("%d",&a[i]);
|
||||||
|
//a[i]+=1; /// From 0 to 1, ... From n-1 to n (Understand)
|
||||||
|
///Query ? Why ??
|
||||||
|
TSum+=query(a[i]+1,n);
|
||||||
|
update(a[i]+1);
|
||||||
|
}
|
||||||
|
int MinSum=TSum;
|
||||||
|
for(int i=0;i<n;i++)
|
||||||
|
{
|
||||||
|
/// 当a[i]由第一个变为最后一个时,
|
||||||
|
/// 要加上a[i]后面大于a[i]的数的个数,
|
||||||
|
/// 有n-1-a[i]个,要减去a[i]后面小于a[i]的数的个数,
|
||||||
|
/// 有a[i]个(注意i是从0开始的)
|
||||||
|
TSum=TSum+n - 2*a[i] -1;
|
||||||
|
MinSum=min(MinSum,TSum);
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("%d\n",MinSum);
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user