mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
318 lines
11 KiB
C++
318 lines
11 KiB
C++
|
#include <cmath>
|
||
|
#include <cstdio>
|
||
|
#include <cstring>
|
||
|
#include <set>
|
||
|
#include <iostream>
|
||
|
#include <vector>
|
||
|
#include <algorithm>
|
||
|
using namespace std;
|
||
|
const double eps=1e-10;
|
||
|
const int INF=1<<29;
|
||
|
const double PI=acos(-1.0);
|
||
|
int doublecmp(double x){
|
||
|
if(fabs(x)<eps)return 0;else return x<0?-1:1;
|
||
|
}
|
||
|
struct Point{
|
||
|
double x,y;
|
||
|
Point(double x=0,double y=0):x(x),y(y){}
|
||
|
};
|
||
|
typedef Point Vector;
|
||
|
Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
|
||
|
Vector operator-(Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}
|
||
|
Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}
|
||
|
Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}
|
||
|
bool operator<(const Point&a,const Point&b){return a.x<b.x||(a.x==b.x&&a.y<b.y);}
|
||
|
bool operator==(const Point&a,const Point&b){
|
||
|
return doublecmp(a.x-b.x)==0&&doublecmp(a.y-b.y)==0;
|
||
|
}
|
||
|
bool operator!=(const Point&a,const Point&b){return a==b?false:true;}
|
||
|
struct Segment{
|
||
|
Point a,b;
|
||
|
Segment(){}
|
||
|
Segment(Point _a,Point _b){a=_a,b=_b;}
|
||
|
bool friend operator<(const Segment& p,const Segment& q){return p.a<q.a||(p.a==q.a&&p.b<q.b);}
|
||
|
bool friend operator==(const Segment& p,const Segment& q){return (p.a==q.a&&p.b==q.b)||(p.a==q.b&&p.b==q.a);}
|
||
|
};
|
||
|
struct Circle{
|
||
|
Point c;
|
||
|
double r;
|
||
|
Circle(){}
|
||
|
Circle(Point _c, double _r):c(_c),r(_r) {}
|
||
|
Point point(double a)const{return Point(c.x+cos(a)*r,c.y+sin(a)*r);}
|
||
|
bool friend operator<(const Circle& a,const Circle& b){return a.r<b.r;}
|
||
|
};
|
||
|
struct Line{
|
||
|
Point p;
|
||
|
Vector v;
|
||
|
double ang;
|
||
|
Line() {}
|
||
|
Line(const Point &_p, const Vector &_v):p(_p),v(_v){ang = atan2(v.y, v.x);}
|
||
|
bool operator<(const Line &L)const{return ang < L.ang;}
|
||
|
};
|
||
|
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
|
||
|
double Length(Vector a){return sqrt(Dot(a,a));}
|
||
|
double Angle(Vector a,Vector b){return acos(Dot(a,b)/Length(a)/Length(b));}
|
||
|
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
|
||
|
double Area2(Point a,Point b,Point c){return Cross(b-a,c-a);}
|
||
|
double DegreeToRadius(double deg){return deg/180*PI;}
|
||
|
double GetRerotateAngle(Vector a,Vector b){
|
||
|
double tempa=Angle(a,Vector(1,0));
|
||
|
if(a.y<0) tempa=2*PI-tempa;
|
||
|
double tempb=Angle(b,Vector(1,0));
|
||
|
if(b.y<0) tempb=2*PI-tempb;
|
||
|
if((tempa-tempb)>0) return tempa-tempb;
|
||
|
else return tempa-tempb+2*PI;
|
||
|
}
|
||
|
Vector Rotate(Vector a,double rad){
|
||
|
return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
|
||
|
}
|
||
|
Vector Normal(Vector a){
|
||
|
double L=Length(a);
|
||
|
return Vector(-a.y/L,a.x/L);
|
||
|
}
|
||
|
Point GetLineProjection(Point p,Point a,Point b){
|
||
|
Vector v=b-a;
|
||
|
return a+v*(Dot(v,p-a)/Dot(v,v));
|
||
|
}
|
||
|
Point GetLineIntersection(Point p,Vector v,Point q,Vector w){
|
||
|
Vector u=p-q;
|
||
|
double t=Cross(w,u)/Cross(v,w);
|
||
|
return p+v*t;
|
||
|
}
|
||
|
int ConvexHull(Point* p,int n,Point* ch){
|
||
|
sort(p,p+n);
|
||
|
int m=0;
|
||
|
for(int i=0;i<n;i++){
|
||
|
while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
|
||
|
ch[m++]=p[i];
|
||
|
}
|
||
|
int k=m;
|
||
|
for(int i=n-2;i>=0;i--){
|
||
|
while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
|
||
|
ch[m++]=p[i];
|
||
|
}
|
||
|
if(n>0) m--;
|
||
|
return m;
|
||
|
}
|
||
|
double Heron(double a,double b,double c){
|
||
|
double p=(a+b+c)/2;
|
||
|
return sqrt(p*(p-a)*(p-b)*(p-c));
|
||
|
}
|
||
|
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){
|
||
|
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
|
||
|
double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
|
||
|
return doublecmp(c1)*doublecmp(c2)<0&&doublecmp(c3)*doublecmp(c4)<0;
|
||
|
}
|
||
|
double CutConvex(const int n,Point* poly, const Point a,const Point b, vector<Point> result[3]){
|
||
|
vector<Point> points;
|
||
|
Point p;
|
||
|
Point p1=a,p2=b;
|
||
|
int cur,pre;
|
||
|
result[0].clear();
|
||
|
result[1].clear();
|
||
|
result[2].clear();
|
||
|
if(n==0) return 0;
|
||
|
double tempcross;
|
||
|
tempcross=Cross(p2-p1,poly[0]-p1);
|
||
|
if(doublecmp(tempcross)==0) pre=cur=2;
|
||
|
else if(tempcross>0) pre=cur=0;
|
||
|
else pre=cur=1;
|
||
|
for(int i=0;i<n;i++){
|
||
|
tempcross=Cross(p2-p1,poly[(i+1)%n]-p1);
|
||
|
if(doublecmp(tempcross)==0) cur=2;
|
||
|
else if(tempcross>0) cur=0;
|
||
|
else cur=1;
|
||
|
if(cur==pre){
|
||
|
result[cur].push_back(poly[(i+1)%n]);
|
||
|
}
|
||
|
else{
|
||
|
p1=poly[i];
|
||
|
p2=poly[(i+1)%n];
|
||
|
p=GetLineIntersection(p1,p2-p1,a,b-a);
|
||
|
points.push_back(p);
|
||
|
result[pre].push_back(p);
|
||
|
result[cur].push_back(p);
|
||
|
result[cur].push_back(poly[(i+1)%n]);
|
||
|
pre=cur;
|
||
|
}
|
||
|
}
|
||
|
sort(points.begin(),points.end());
|
||
|
if(points.size()<2){
|
||
|
return 0;
|
||
|
}
|
||
|
else{
|
||
|
return Length(points.front()-points.back());
|
||
|
}
|
||
|
}
|
||
|
double DistanceToSegment(Point p,Segment s){
|
||
|
if(s.a==s.b) return Length(p-s.a);
|
||
|
Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b;
|
||
|
if(doublecmp(Dot(v1,v2))<0) return Length(v2);
|
||
|
else if(doublecmp(Dot(v1,v3))>0) return Length(v3);
|
||
|
else return fabs(Cross(v1,v2))/Length(v1);
|
||
|
}
|
||
|
bool isPointOnSegment(Point p,Segment s){
|
||
|
return doublecmp(DistanceToSegment(p,s))==0;
|
||
|
}
|
||
|
int isPointInPolygon(Point p, Point* poly,int n){
|
||
|
int wn=0;
|
||
|
for(int i=0;i<n;i++){
|
||
|
Point& p2=poly[(i+1)%n];
|
||
|
if(isPointOnSegment(p,Segment(poly[i],p2))) return -1;
|
||
|
int k=doublecmp(Cross(p2-poly[i],p-poly[i]));
|
||
|
int d1=doublecmp(poly[i].y-p.y);
|
||
|
int d2=doublecmp(p2.y-p.y);
|
||
|
if(k>0&&d1<=0&&d2>0)wn++;
|
||
|
if(k<0&&d2<=0&&d1>0)wn--;
|
||
|
}
|
||
|
if(wn) return 1;
|
||
|
else return 0;
|
||
|
}
|
||
|
double PolygonArea(vector<Point> p){
|
||
|
double area=0;
|
||
|
int n=p.size();
|
||
|
for(int i=1;i<n-1;i++)
|
||
|
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
|
||
|
return area/2;
|
||
|
}
|
||
|
int PSLGtoPolygons(Segment arr[],int n,vector<Point>* Polygons){
|
||
|
int count=n-1;
|
||
|
bool vis[9999];memset(vis,0,sizeof vis);
|
||
|
Point star=arr[0].a,pre=arr[0].a,cur=arr[0].b,purpose=arr[0].b;vis[0]=true;
|
||
|
int mark;
|
||
|
while(purpose!=star){
|
||
|
double theta=-INF;
|
||
|
for(int i=0;i<n;i++)if(!vis[i]&&arr[i].a==cur&&arr[i].b!=pre){
|
||
|
if(theta<GetRerotateAngle(pre-cur,arr[i].b-cur)){
|
||
|
theta=GetRerotateAngle(pre-cur,arr[i].b-cur);
|
||
|
purpose=arr[i].b;
|
||
|
mark=i;
|
||
|
}
|
||
|
}
|
||
|
vis[mark]=true;count--;
|
||
|
pre=cur;cur=purpose;
|
||
|
}
|
||
|
int polyidx=0;
|
||
|
while(count>0){
|
||
|
for(int i=0;i<n;i++)if(!vis[i]){
|
||
|
star=arr[i].a,pre=arr[i].a,cur=arr[i].b,purpose=arr[i].b;vis[i]=true;count--;
|
||
|
Polygons[polyidx].clear();
|
||
|
Polygons[polyidx].push_back(cur);
|
||
|
break;
|
||
|
}
|
||
|
while(purpose!=star){
|
||
|
double theta=-INF;
|
||
|
for(int i=0;i<n;i++)if(!vis[i]&&arr[i].a==cur&&arr[i].b!=pre){
|
||
|
if(theta<GetRerotateAngle(pre-cur,arr[i].b-cur)){
|
||
|
theta=GetRerotateAngle(pre-cur,arr[i].b-cur);
|
||
|
purpose=arr[i].b;
|
||
|
mark=i;
|
||
|
}
|
||
|
}
|
||
|
vis[mark]=true;count--;
|
||
|
Polygons[polyidx].push_back(purpose);
|
||
|
pre=cur;cur=purpose;
|
||
|
}
|
||
|
polyidx++;
|
||
|
}
|
||
|
return polyidx;
|
||
|
}
|
||
|
int GetLineCircleIntersection(Line L,Circle C,Point& p1,Point& p2){
|
||
|
double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y-C.c.y;
|
||
|
double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -C.r*C.r;
|
||
|
double delta = f*f - 4*e*g;
|
||
|
if(doublecmp(delta) < 0) return 0;
|
||
|
if(doublecmp(delta) == 0) {
|
||
|
p1=p1=C.point(-f/(2*e));
|
||
|
return 1;
|
||
|
}
|
||
|
p1=(L.p+L.v*(-f-sqrt(delta))/(2*e));
|
||
|
p2=(L.p+L.v*(-f+sqrt(delta))/(2*e));
|
||
|
return 2;
|
||
|
}
|
||
|
struct Allpoint{
|
||
|
Point p;
|
||
|
int pos;
|
||
|
bool friend operator<(Allpoint a,Allpoint b){
|
||
|
if(a.pos==-1&&a.pos==b.pos) return a.p<b.p;
|
||
|
else if(a.pos==-1) return true;
|
||
|
else if(b.pos==-1) return false;
|
||
|
else return a.p<b.p;
|
||
|
}
|
||
|
}allpoint[8000];
|
||
|
int idx=0;
|
||
|
int lpint(Line l, Point a, Point b, Point c, Allpoint *sol) {
|
||
|
int ret = 0;
|
||
|
if (doublecmp(Cross(l.v, a - b)) != 0) {
|
||
|
sol[ret].p = GetLineIntersection(l.p,l.v, a, b-a);
|
||
|
if (isPointOnSegment(sol[ret].p, Segment(a, b))) ret++;
|
||
|
}
|
||
|
if (doublecmp(Cross(l.v, c - b)) != 0) {
|
||
|
sol[ret].p = GetLineIntersection(l.p,l.v,c, b-c);
|
||
|
if (isPointOnSegment(sol[ret].p, Segment(c, b))) ret++;
|
||
|
}
|
||
|
if (doublecmp(Cross(l.v, a - c)) != 0) {
|
||
|
sol[ret].p = GetLineIntersection(l.p,l.v, a, c-a);
|
||
|
if (isPointOnSegment(sol[ret].p, Segment(a, c))) ret++;
|
||
|
}
|
||
|
if (ret < 2) return 0;
|
||
|
sort(sol, sol + ret);
|
||
|
if (ret == 3) {
|
||
|
if (sol[0].p == sol[1].p) sol[1].p = sol[2].p;
|
||
|
}
|
||
|
if (sol[0].p == sol[1].p) return 0;
|
||
|
return 2;
|
||
|
}
|
||
|
int main()
|
||
|
{
|
||
|
int T,cas=1;
|
||
|
scanf("%d",&T);
|
||
|
while(T--){
|
||
|
double v1,v2,v,t,x;
|
||
|
int n;
|
||
|
idx=0;
|
||
|
scanf("%lf%lf%lf%lf%lf",&v1,&v2,&v,&t,&x);
|
||
|
scanf("%d",&n);
|
||
|
double time = v2 * t / (v2 - v1);
|
||
|
Line l = Line(Point(x, 0), Point(x - v1 * time, v * time)-Point(x,0));
|
||
|
for(int i=0;i<n;i++){
|
||
|
Point O;
|
||
|
double r,h;
|
||
|
Allpoint ip[4];
|
||
|
scanf("%lf%lf%lf%lf", &O.x, &O.y, &r, &h);
|
||
|
int ipp = lpint(l, Point(O.x + r, O.y), Point(O.x - r, O.y), Point(O.x, O.y + h), ip);
|
||
|
if (ipp) {
|
||
|
if (ip[1] < ip[0]) swap(ip[0], ip[1]);
|
||
|
for (int i = 0; i < 2; i++) ip[i].pos= i & 1, allpoint[idx++] = ip[i];
|
||
|
}
|
||
|
int ipc = GetLineCircleIntersection(l,Circle(O, r), ip[0].p,ip[1].p);
|
||
|
if (ipc==2) {
|
||
|
if (ip[1] < ip[0]) swap(ip[0], ip[1]);
|
||
|
if (doublecmp(ip[1].p.y - O.y) >= 0) continue;
|
||
|
if (doublecmp(ip[0].p.y - O.y) > 0) ip[0].p = GetLineIntersection(l.p,l.v, O, Point(1.0, 0));
|
||
|
for (int i = 0; i < 2; i++) ip[i].pos = i & 1, allpoint[idx++] = ip[i];
|
||
|
}
|
||
|
}
|
||
|
sort(allpoint, allpoint + idx);
|
||
|
int cnt = 0;
|
||
|
double sum = 0, lp = x - v1 * time, rp = x, ls = lp;
|
||
|
for (int i = 0; i < idx; i++) {
|
||
|
if (allpoint[i].p.x > rp) break;
|
||
|
if (allpoint[i].p.x < lp) {
|
||
|
if (allpoint[i].pos) cnt--;
|
||
|
else cnt++;
|
||
|
} else {
|
||
|
if (allpoint[i].pos) {
|
||
|
if (cnt == 1) sum += allpoint[i].p.x - ls;
|
||
|
cnt--;
|
||
|
} else {
|
||
|
if (cnt == 0) ls = allpoint[i].p.x;
|
||
|
cnt++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (cnt > 0) sum += rp - ls;
|
||
|
printf("Case %d: %.4f\n", cas++, sum / v1);
|
||
|
}
|
||
|
}
|