mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
164 lines
4.0 KiB
C++
164 lines
4.0 KiB
C++
|
#include<cstdio>
|
||
|
#include<cstring>
|
||
|
#include<algorithm>
|
||
|
#include<cmath>
|
||
|
#include<vector>
|
||
|
#define eps 1e-8
|
||
|
#define N 200
|
||
|
using namespace std;
|
||
|
const double PI=acos(-1.0);
|
||
|
int dlcmp(double x)
|
||
|
{
|
||
|
return x<-eps?-1:x>eps;
|
||
|
}
|
||
|
struct Point
|
||
|
{
|
||
|
double x,y;
|
||
|
Point(){}
|
||
|
Point(double a,double b):x(a),y(b){}
|
||
|
Point operator + (const Point a) const {return Point(x+a.x,y+a.y);}
|
||
|
Point operator - (const Point a) const {return Point(x-a.x,y-a.y);}
|
||
|
Point operator * (const double a) const {return Point(x*a,y*a);}
|
||
|
Point operator / (const double a) const {return Point(x/a,y/a);}
|
||
|
bool operator == (const Point a)
|
||
|
{
|
||
|
return !dlcmp(x-a.x)&&!dlcmp(y-a.y);
|
||
|
}
|
||
|
Point trunc(double d) const
|
||
|
{
|
||
|
double dis(Point,Point);
|
||
|
double len=dis(*this,Point(0,0));
|
||
|
return Point(x*d/len,y*d/len);
|
||
|
}
|
||
|
Point rotate(double a)
|
||
|
{
|
||
|
return Point(x*cos(a)-y*sin(a),y*cos(a)+x*sin(a));
|
||
|
}
|
||
|
};
|
||
|
struct Circle
|
||
|
{
|
||
|
Point o;
|
||
|
double r;
|
||
|
Circle(){}
|
||
|
Circle(Point a,double l):o(a),r(l){}
|
||
|
};
|
||
|
struct node
|
||
|
{
|
||
|
double s,e;
|
||
|
node(){}
|
||
|
node(double a,double b):s(a),e(b){}
|
||
|
};
|
||
|
Circle c[N],red,purple;
|
||
|
vector<node>arc;
|
||
|
double sqr(double x)
|
||
|
{
|
||
|
return x*x;
|
||
|
}
|
||
|
double fix(double x)
|
||
|
{
|
||
|
if (dlcmp(x-1)>=0)
|
||
|
return 1;
|
||
|
if (dlcmp(x+1)<=0)
|
||
|
return -1;
|
||
|
return x;
|
||
|
}
|
||
|
double dis(Point a,Point b)
|
||
|
{
|
||
|
return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));
|
||
|
}
|
||
|
void get_InCommonTangent(Circle c1,Circle c2,Point &s1,Point &e1,Point &s2,Point &e2)
|
||
|
{
|
||
|
double l=dis(c1.o,c2.o);
|
||
|
double d=l*c1.r/(c1.r+c2.r);
|
||
|
double tmp=c1.r/d;
|
||
|
tmp=fix(tmp);
|
||
|
double theta=acos(tmp);
|
||
|
Point vec=c2.o-c1.o;
|
||
|
vec=vec.trunc(c1.r);
|
||
|
s1=c1.o+vec.rotate(theta);
|
||
|
s2=c1.o+vec.rotate(-theta);
|
||
|
vec=c1.o-c2.o;
|
||
|
vec=vec.trunc(c2.r);
|
||
|
e1=c2.o+vec.rotate(theta);
|
||
|
e2=c2.o+vec.rotate(-theta);
|
||
|
}
|
||
|
void inter_circle_ray(Circle c,Point s,Point e,Point &p)
|
||
|
{
|
||
|
Point vec=e-s;
|
||
|
double A=sqr(vec.x)+sqr(vec.y);
|
||
|
double B=2*(vec.x*(s.x-c.o.x)+vec.y*(s.y-c.o.y));
|
||
|
double C=sqr(s.x-c.o.x)+sqr(s.y-c.o.y)-sqr(c.r);
|
||
|
double delta=sqr(B)-4*A*C;
|
||
|
delta=fabs(delta);
|
||
|
double k=(-B+sqrt(delta))/(2*A);
|
||
|
p=s+vec*k;
|
||
|
}
|
||
|
double get_angle(Point a)
|
||
|
{
|
||
|
return atan2(a.y,a.x);
|
||
|
}
|
||
|
double cmp(node a,node b)
|
||
|
{
|
||
|
if (dlcmp(a.s-b.s)==0)
|
||
|
return dlcmp(a.e-b.e)<0;
|
||
|
else
|
||
|
return dlcmp(a.s-b.s)<0;
|
||
|
}
|
||
|
int main()
|
||
|
{
|
||
|
int n,p,x,y,r,i,j;
|
||
|
double ans,sum,cur;
|
||
|
node u,v;
|
||
|
Point s1,e1,s2,e2,vec,p1,p2;
|
||
|
while (scanf("%d%d%d%d%d",&n,&p,&x,&y,&r),n||p||x||y||r)
|
||
|
{
|
||
|
purple.o=Point(0,0);
|
||
|
purple.r=(double)p;
|
||
|
red.o.x=(double)x;
|
||
|
red.o.y=(double)y;
|
||
|
red.r=(double)r;
|
||
|
arc.clear();
|
||
|
for (i=0;i<n;i++)
|
||
|
scanf("%lf%lf%lf",&c[i].o.x,&c[i].o.y,&c[i].r);
|
||
|
for (i=0;i<n;i++)
|
||
|
{
|
||
|
get_InCommonTangent(red,c[i],s1,e1,s2,e2);
|
||
|
if (s1==e1)
|
||
|
{
|
||
|
vec=c[i].o-red.o;
|
||
|
e1=s1+vec.rotate(PI/2);
|
||
|
e2=s2+vec.rotate(-PI/2);
|
||
|
}
|
||
|
inter_circle_ray(purple,s1,e1,p1);
|
||
|
inter_circle_ray(purple,s2,e2,p2);
|
||
|
u.s=get_angle(p1);
|
||
|
u.e=get_angle(p2);
|
||
|
if (u.s>u.e)
|
||
|
{
|
||
|
arc.push_back(node(u.s,PI));
|
||
|
arc.push_back(node(-PI,u.e));
|
||
|
}
|
||
|
else
|
||
|
arc.push_back(u);
|
||
|
}
|
||
|
sort(arc.begin(),arc.end(),cmp);
|
||
|
sum=arc[0].e-arc[0].s;
|
||
|
cur=arc[0].e;
|
||
|
for (i=1;i<arc.size();i++)
|
||
|
{
|
||
|
if (dlcmp(arc[i].e-cur)<=0)
|
||
|
continue;
|
||
|
if (dlcmp(arc[i].s-cur)>0)
|
||
|
sum+=arc[i].e-arc[i].s;
|
||
|
else
|
||
|
sum+=arc[i].e-cur;
|
||
|
cur=arc[i].e;
|
||
|
}
|
||
|
ans=(2*PI-sum)/(2*PI);
|
||
|
if (ans<0)
|
||
|
ans=0;
|
||
|
printf("%.4f\n",ans);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|