OJ-Problems-Source/HDOJ/4093_autoAC.cpp

193 lines
5.3 KiB
C++
Raw Normal View History

#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
const long double PI = acos(-1.0);
struct Complex
{
long double real, image;
Complex(long double _real, long double _image)
{
real = _real;
image = _image;
}
Complex(){}
};
Complex operator + (const Complex &c1, const Complex &c2)
{
return Complex(c1.real + c2.real, c1.image + c2.image);
}
Complex operator - (const Complex &c1, const Complex &c2)
{
return Complex(c1.real - c2.real, c1.image - c2.image);
}
Complex operator * (const Complex &c1, const Complex &c2)
{
return Complex(c1.real*c2.real - c1.image*c2.image, c1.real*c2.image + c1.image*c2.real);
}
int rev(int id, int len)
{
int ret = 0;
for(int i = 0; (1 << i) < len; i++)
{
ret <<= 1;
if(id & (1 << i)) ret |= 1;
}
return ret;
}
Complex A[1 << 16];
void FFT(Complex *a, int len, int DFT)
{
for(int i = 0; i < len; i++) A[rev(i, len)] = a[i];
for(int s = 1; (1 << s) <= len; s++)
{
int m = (1 << s);
Complex wm = Complex(cos(DFT*2*PI/m), sin(DFT*2*PI/m));
for(int k = 0; k < len; k += m)
{
Complex w = Complex(1, 0);
for(int j = 0; j < (m >> 1); j++)
{
Complex t = w*A[k + j + (m >> 1)];
Complex u = A[k + j];
A[k + j] = u + t;
A[k + j + (m >> 1)] = u - t;
w = w*wm;
}
}
}
if(DFT == -1) for(int i = 0; i < len; i++) A[i].real /= len, A[i].image /= len;
for(int i = 0; i < len; i++) a[i] = A[i];
}
int polynomialLength;
void multiply(Complex *p1, Complex *p2)
{
for(int i = 0; i < polynomialLength; i++)
p1[i] = p1[i]*p2[i];
return;
}
void Copy(Complex *p1, Complex *p2)
{
for(int i = 0; i < polynomialLength; i++)
p1[i] = p2[i];
return;
}
int a[13010];
int p, m;
Complex f[6][1 << 16];
Complex g[7][1 << 16];
const int par[6][10] =
{
{0},
{1},
{1, -1},
{1, -3, 2},
{1, -6, 3, 8, -6},
{1, -10, 15, 20, -20, -30, 24}
};
void solve()
{
int maxL = 0;
for(int i = 1; i <= m; i++)
maxL = max(maxL, a[i]);
polynomialLength = 1;
while(polynomialLength <= maxL*p) polynomialLength <<= 1;
for(int i = 1; i <= p; i++)
{
for(int j = 0; j < polynomialLength; j++)
f[i][j] = Complex(0, 0);
for(int j = 1; j <= m; j++)
f[i][i*a[j]].real += 1;
FFT(f[i], polynomialLength, 1);
}
int inclusiveLength = -1;
switch(p)
{
case 1: Copy(g[0], f[1]);
inclusiveLength = 1;
break;
case 2: Copy(g[0], f[1]);
multiply(g[0], f[1]);
Copy(g[1], f[2]);
inclusiveLength = 2;
break;
case 3: Copy(g[0], f[1]);
multiply(g[0], f[1]); multiply(g[0], f[1]);
Copy(g[1], f[2]);
multiply(g[1], f[1]);
Copy(g[2], f[3]);
inclusiveLength = 3;
break;
case 4: Copy(g[0], f[1]);
multiply(g[0], f[1]); multiply(g[0], f[1]); multiply(g[0], f[1]);
Copy(g[1], f[2]);
multiply(g[1], f[1]); multiply(g[1], f[1]);
Copy(g[2], f[2]);
multiply(g[2], f[2]);
Copy(g[3], f[3]);
multiply(g[3], f[1]);
Copy(g[4], f[4]);
inclusiveLength = 5;
break;
case 5: Copy(g[0], f[1]);
multiply(g[0], f[1]); multiply(g[0], f[1]); multiply(g[0], f[1]); multiply(g[0], f[1]);
Copy(g[1], f[2]);
multiply(g[1], f[1]); multiply(g[1], f[1]); multiply(g[1], f[1]);
Copy(g[2], f[2]);
multiply(g[2], f[2]); multiply(g[2], f[1]);
Copy(g[3], f[3]);
multiply(g[3], f[1]); multiply(g[3], f[1]);
Copy(g[4], f[3]);
multiply(g[4], f[2]);
Copy(g[5], f[4]);
multiply(g[5], f[1]);
Copy(g[6], f[5]);
inclusiveLength = 7;
break;
}
for(int i = 0; i < inclusiveLength; i++)
FFT(g[i], polynomialLength, -1);
for(int i = 0; i < polynomialLength; i++)
{
double res = 0;
for(int j = 0; j < inclusiveLength; j++)
res += g[j][i].real*par[p][j];
for(int j = 1; j <= p; j++) res /= j;
if(res > 0.5) printf("%d: %.0f\n", i, res);
}
return;
}
int main()
{
int T;
scanf("%d", &T);
for(int cas = 1; cas <= T; cas++)
{
scanf("%d %d", &m, &p);
for(int i = 1; i <= m; i++)
scanf("%d", &a[i]);
printf("Case #%d:\n", cas);
solve();
putchar('\n');
}
return 0;
}