OJ-Problems-Source/HDOJ/4887_autoAC.cpp

204 lines
4.4 KiB
C++
Raw Normal View History

#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
using namespace std;
#define ll __int64
#define usint unsigned int
const usint NONE=0xffffffff;
int n,s1,s2;
int a1[33],a2[33];
usint xo;
class hash {
public:
hash() {
memset(a,0xff,sizeof(a));
}
usint locate(usint x) {
usint l=x%MOD;
while(a[l]!=x&&a[l]!=NONE) l=l+1;
return l;
}
void insert(usint x,usint va) {
usint l=locate(x);
if(a[l]==NONE) {
a[l]=x;
v[l]=va;
}
}
usint get(usint x) {
usint l=locate(x);
return a[l]==x?v[l]:NONE;
}
void clear() {
memset(a,0xff,sizeof(a));
}
private:
static const usint MOD=1000007;
usint a[MOD+100],v[MOD+100];
} S;
struct vct {
bool a[33];
vct(bool q[33]) {
for(int i=0; i<=n; i++)
a[i]=q[i];
}
vct() {}
void clear() {
memset(a,0,sizeof(a));
}
void show() {
for(int i=0; i<=n; i++)
printf("%d ",a[i]);
puts("");
}
};
struct matrix {
bool a[33][33];
matrix(bool q[33][33]) {
for(int i=0; i<=n; i++)
for(int j=0; j<=n; j++)
a[i][j]=q[i][j];
}
matrix() {}
void clear() {
memset(a,0,sizeof(a));
}
friend matrix operator *(matrix A,matrix B) {
matrix re;
int i,j,k;
re.clear();
for(i=0; i<=n; i++)
for(j=0; j<=n; j++)
for(k=0; k<=n; k++)
re.a[i][j]=(re.a[i][j]^(A.a[i][k]*B.a[k][j]));
return re;
}
void danwei() {
memset(a,0,sizeof(a));
for(int i=0; i<=n; i++)
a[i][i]=1;
}
void show() {
for(int i=0; i<=n; i++) {
for(int j=0; j<=n; j++)
printf("%d ",a[i][j]);
puts("");
}
}
};
inline usint atox(bool a[33],int n) {
usint re=0;
for(int i=0; i<n; i++)
re=(re<<1)+a[n-i-1];
return re;
}
inline int xtoa(bool a[33],int n,usint x) {
for(int i=0; i<n; i++) {
a[i]=x&1;
x=x>>1;
}
}
void check(bool a[33],int n) {
for(int i=0; i<n; i++)
printf("%2d",a[i]);
puts("");
}
inline usint next(usint now) {
bool a[33],j;
usint re;
xtoa(a,n,now);
j=a[a1[0]];
for(int i=1; i<s1; i++)
j^=a[a1[i]];
re=(now>>1)+(j<<(n-1));
re^=xo;
return re;
}
vct operator * (matrix mt,vct v) {
vct re;
int i,j;
re.clear();
for(i=0; i<=n; i++)
for(j=0; j<=n; j++)
re.a[i]=(re.a[i]^(mt.a[i][j]*v.a[j]));
return re;
}
matrix qpow(matrix a,usint x) {
matrix re,t;
re.danwei();
t=a;
while(x>0) {
if(x&1==1)re=re*t;
x=x>>1;
t=t*t;
}
return re;
}
int main() {
usint i,j;
bool a[33];
usint cnt;
usint st,ed,now,m,t;
matrix ni,nc,n1,n2;
vct v;
while(scanf("%d%d%d",&n,&s1,&s2)!=EOF) {
for(i=0; i<s1; i++) {
scanf("%d",&a1[i]);
a1[i]--;
}
xo=0;
for(i=0; i<s2; i++) {
scanf("%d",&j);
a2[i]=j-1;
xo=xo|(1<<(j-1));
}
for(i=0; i<n; i++)
scanf("%d",&a[i]);
st=atox(a,n);
for(i=0; i<n; i++)
scanf("%d",&a[i]);
ed=atox(a,n);
n1.clear();
n2.clear();
for(i=0; i<=n; i++)
n2.a[i][i]=1;
for(i=0; i<s2; i++)
n2.a[a2[i]][n]=1;
for(i=0; i<s1; i++)
if(a1[i]>0) n1.a[0][a1[i]-1]=1;
n1.a[0][n-1]=1;
for(i=0; i<n-1; i++)
n1.a[i+1][i]=1;
n1.a[n][n]=1;
ni=n1*n2;
now=st;
S.clear();
m=ceil(sqrt(((usint)1)<<n));
for(i=0; i<m; i++) {
S.insert(now,i);
now=next(now);
}
nc=qpow(ni,m);
now=ed;
cnt=0;
t=S.get(now);
while(t==NONE) {
if(cnt>m) break;
xtoa(v.a,n,now);
v.a[n]=1;
v=nc*v;
now=atox(v.a,n);
cnt++;
t=S.get(now);
}
if(t==NONE) printf("poor sisyphus\n");
else printf("%u\n",cnt*m+t);
}
return 0;
}