mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
180 lines
3.0 KiB
C++
180 lines
3.0 KiB
C++
|
#include <iostream>
|
||
|
#include <string.h>
|
||
|
#include <algorithm>
|
||
|
#include <stdio.h>
|
||
|
#include <math.h>
|
||
|
#include <map>
|
||
|
using namespace std;
|
||
|
typedef long long LL;
|
||
|
const int N=1000005;
|
||
|
int p[N];
|
||
|
bool prime[N];
|
||
|
int num,cnt;
|
||
|
LL k,m,newx,g;
|
||
|
LL a[65],b[65];
|
||
|
void isprime()
|
||
|
{
|
||
|
num=0;
|
||
|
int i,j;
|
||
|
memset(prime,true,sizeof(prime));
|
||
|
for(i=2;i<N;i++)
|
||
|
{
|
||
|
if(prime[i])
|
||
|
{
|
||
|
p[num++]=i;
|
||
|
for(j=i+i;j<N;j+=i)
|
||
|
{
|
||
|
prime[j]=false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
LL multi(LL a,LL b,LL m)
|
||
|
{
|
||
|
LL ans=0;
|
||
|
while(b)
|
||
|
{
|
||
|
if(b&1)
|
||
|
{
|
||
|
ans=(ans+a)%m;
|
||
|
b--;
|
||
|
}
|
||
|
b>>=1;
|
||
|
a=(a+a)%m;
|
||
|
}
|
||
|
return ans;
|
||
|
}
|
||
|
LL quick_mod(LL a,LL b,LL m)
|
||
|
{
|
||
|
LL ans=1;
|
||
|
a%=m;
|
||
|
while(b)
|
||
|
{
|
||
|
if(b&1)
|
||
|
{
|
||
|
ans=multi(ans,a,m);
|
||
|
b--;
|
||
|
}
|
||
|
b>>=1;
|
||
|
a=multi(a,a,m);
|
||
|
}
|
||
|
return ans;
|
||
|
}
|
||
|
void factor(LL n)
|
||
|
{
|
||
|
cnt=0;
|
||
|
for(int i=0;(LL)p[i]*p[i]<=n;i++)
|
||
|
{
|
||
|
if(n%p[i]==0)
|
||
|
{
|
||
|
a[cnt]=p[i];
|
||
|
int c=0;
|
||
|
while(n%p[i]==0)
|
||
|
{
|
||
|
c++;
|
||
|
n/=p[i];
|
||
|
}
|
||
|
b[cnt++]=c;
|
||
|
}
|
||
|
}
|
||
|
if(n>1)
|
||
|
{
|
||
|
a[cnt]=n;
|
||
|
b[cnt++]=1;
|
||
|
}
|
||
|
}
|
||
|
LL extend_Euclid(LL a,LL b,LL &x,LL &y)
|
||
|
{
|
||
|
if(b==0)
|
||
|
{
|
||
|
x=1;
|
||
|
y=0;
|
||
|
return a;
|
||
|
}
|
||
|
LL gd=extend_Euclid(b,a%b,x,y);
|
||
|
LL temp=x;
|
||
|
x=y;
|
||
|
y=temp-(a/b)*y;
|
||
|
return gd;
|
||
|
}
|
||
|
LL Inv(LL n,LL p)
|
||
|
{
|
||
|
return quick_mod(n,p-2,p);
|
||
|
}
|
||
|
bool dfs(int dept,LL t)
|
||
|
{
|
||
|
if(dept==cnt)
|
||
|
{
|
||
|
LL ans=quick_mod(g,t,m);
|
||
|
if(ans==1&&t!=m-1) return false;
|
||
|
return true;
|
||
|
}
|
||
|
LL tmp=1;
|
||
|
for(int i=0;i<=b[dept];i++)
|
||
|
{
|
||
|
if(!dfs(dept+1,t*tmp)) return false;
|
||
|
tmp*=a[dept];
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
void find()
|
||
|
{
|
||
|
factor(m-1);
|
||
|
for(g=2;;g++)
|
||
|
if(dfs(0,1)) break;
|
||
|
}
|
||
|
LL log_x(LL a,LL b,LL p)
|
||
|
{
|
||
|
map<LL,int>x;
|
||
|
LL z=(LL)ceil(sqrt(p*1.0));
|
||
|
LL v=Inv(quick_mod(a,z,p),p);
|
||
|
LL e=1;
|
||
|
x[1]=0;
|
||
|
for(int i=1;i<z;i++)
|
||
|
{
|
||
|
e=multi(e,a,p);
|
||
|
if(!x.count(e))
|
||
|
x[e]=i;
|
||
|
}
|
||
|
for(int i=0;i<z;i++)
|
||
|
{
|
||
|
if(x.count(b))
|
||
|
return i*z+x[b];
|
||
|
b=multi(b,v,p);
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
LL sol[1005];
|
||
|
void Solve(LL a,LL b,LL n)
|
||
|
{
|
||
|
LL d,x,y;
|
||
|
d=extend_Euclid(a,n,x,y);
|
||
|
if(b%d) puts("-1");
|
||
|
else
|
||
|
{
|
||
|
n/=d;b/=d;
|
||
|
sol[0]=(x*b%n+n)%n;
|
||
|
for(int i=1;i<d;i++)
|
||
|
sol[i]=sol[i-1]+n;
|
||
|
for(int i=0;i<d;i++)
|
||
|
sol[i]=quick_mod(g,sol[i],m);
|
||
|
sort(sol,sol+d);
|
||
|
for(int i=0;i<d;i++)
|
||
|
cout<<sol[i]<<endl;
|
||
|
}
|
||
|
}
|
||
|
int main()
|
||
|
{
|
||
|
int t=1;
|
||
|
isprime();
|
||
|
while(cin>>k>>m>>newx)
|
||
|
{
|
||
|
find();
|
||
|
LL t1=log_x(g,newx,m);
|
||
|
LL t2=m-1;
|
||
|
cout<<"case"<<t++<<":"<<endl;
|
||
|
Solve(k,t1,t2);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|