mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
131 lines
2.3 KiB
C++
131 lines
2.3 KiB
C++
|
#include<iostream>
|
||
|
#include<cstdio>
|
||
|
#include<string>
|
||
|
#include<cstring>
|
||
|
#include<algorithm>
|
||
|
#include<cmath>
|
||
|
using namespace std;
|
||
|
typedef long long ll;
|
||
|
const int maxn=100005;
|
||
|
ll n,k,m;
|
||
|
ll f1[2*maxn],f2[maxn],c[maxn],mul[maxn],num[maxn],tot;
|
||
|
ll cp()
|
||
|
{
|
||
|
f1[0]=1%m;f1[1]=0;
|
||
|
ll i;
|
||
|
for(i=2;i<=2*m;++i)
|
||
|
f1[i]=(((f1[i-1]+f1[i-2])%m)*(i-1))%m;
|
||
|
return f1[(n-k)%(2*m)];
|
||
|
}
|
||
|
void prem()
|
||
|
{
|
||
|
ll i,mm;
|
||
|
mm=m;
|
||
|
tot=0;
|
||
|
for(i=2;i*i<=mm;++i)
|
||
|
{
|
||
|
if(mm%i==0)
|
||
|
{
|
||
|
c[tot]=i;mul[tot]=1;num[tot]=0;
|
||
|
while(mm%i==0)
|
||
|
{
|
||
|
mul[tot]*=i;
|
||
|
num[tot]++;
|
||
|
mm/=i;
|
||
|
}
|
||
|
tot++;
|
||
|
}
|
||
|
}
|
||
|
if(mm!=1)
|
||
|
{
|
||
|
c[tot]=mm;mul[tot]=mm;num[tot]=1;
|
||
|
tot++;
|
||
|
}
|
||
|
}
|
||
|
ll quickpow(ll a,ll b,ll c)
|
||
|
{
|
||
|
ll ret=1;
|
||
|
while(b)
|
||
|
{
|
||
|
if(b&1)
|
||
|
{
|
||
|
(ret*=a)%=c;
|
||
|
}
|
||
|
(a*=a)%=c;
|
||
|
b>>=1;
|
||
|
}
|
||
|
return ret%c;
|
||
|
}
|
||
|
void ex_gcd(ll a,ll b,ll &x,ll &y)
|
||
|
{
|
||
|
if(b==0)
|
||
|
{
|
||
|
x=1;y=0;
|
||
|
return ;
|
||
|
}
|
||
|
ex_gcd(b,a%b,x,y);
|
||
|
ll t=x;
|
||
|
x=y;
|
||
|
y=t-(a/b)*y;
|
||
|
}
|
||
|
ll count(ll a,ll p)
|
||
|
{
|
||
|
if(a<p)
|
||
|
return 0;
|
||
|
else
|
||
|
return a/p+count(a/p,p);
|
||
|
}
|
||
|
ll count2(ll a,ll p,ll mp)
|
||
|
{
|
||
|
if(a<p)
|
||
|
return f2[a];
|
||
|
return ((f2[a%mp]*quickpow(f2[mp-1],a/mp,mp))%mp*count2(a/p,p,mp))%mp;
|
||
|
}
|
||
|
ll work1(ll id)
|
||
|
{
|
||
|
ll p=c[id];ll mp=mul[id];ll nm=num[id];
|
||
|
ll t1;
|
||
|
t1=count(n,p)-count(k,p)-count(n-k,p);
|
||
|
if(t1>=nm)
|
||
|
return 0;
|
||
|
ll ret=quickpow(p,t1,mp);
|
||
|
ll i,x,y;
|
||
|
f2[0]=1;
|
||
|
for(i=1;i<=mp;++i)
|
||
|
{
|
||
|
f2[i]=f2[i-1];
|
||
|
if(i%p!=0)
|
||
|
f2[i]*=i;
|
||
|
f2[i]%=mp;
|
||
|
}
|
||
|
ex_gcd(count2(k,p,mp)*count2(n-k,p,mp),mp,x,y);
|
||
|
(ret*=x)%=mp;
|
||
|
(ret*=count2(n,p,mp))%=mp;
|
||
|
return ret;
|
||
|
}
|
||
|
ll work()
|
||
|
{
|
||
|
ll i,ret=0,tmp,x,y;
|
||
|
prem();
|
||
|
for(i=0;i<tot;++i)
|
||
|
{
|
||
|
tmp=work1(i);
|
||
|
ex_gcd(m/mul[i],mul[i],x,y);
|
||
|
ret+=(((m/mul[i])%m*x)%m*tmp)%m;
|
||
|
}
|
||
|
ret=(ret%m+m)%m;
|
||
|
return (ret*cp())%m;
|
||
|
}
|
||
|
int main()
|
||
|
{
|
||
|
int t,cas=0;
|
||
|
scanf("%d",&t);
|
||
|
while(t--)
|
||
|
{
|
||
|
cas++;
|
||
|
scanf("%I64d%I64d%I64d",&n,&k,&m);
|
||
|
printf("Case %d: %I64d\n",cas,work());
|
||
|
}
|
||
|
return 0;
|
||
|
}
|