mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
175 lines
5.6 KiB
C++
175 lines
5.6 KiB
C++
|
#include <map>
|
||
|
#include <set>
|
||
|
#include <list>
|
||
|
#include <cmath>
|
||
|
#include <ctime>
|
||
|
#include <deque>
|
||
|
#include <queue>
|
||
|
#include <stack>
|
||
|
#include <bitset>
|
||
|
#include <cctype>
|
||
|
#include <cstdio>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
#include <cassert>
|
||
|
#include <cstdlib>
|
||
|
#include <cstring>
|
||
|
#include <iomanip>
|
||
|
#include <sstream>
|
||
|
#include <iostream>
|
||
|
#include <algorithm>
|
||
|
using namespace std;
|
||
|
#define PB push_back
|
||
|
#define MP make_pair
|
||
|
#define AA first
|
||
|
#define BB second
|
||
|
#define OP begin()
|
||
|
#define ED end()
|
||
|
#define SZ size()
|
||
|
#define SORT(x) sort(x.OP,x.ED)
|
||
|
#define SQ(x) ((x)*(x))
|
||
|
#define SSP system("pause")
|
||
|
#define cmin(x,y) x=min(x,y)
|
||
|
#define cmax(x,y) x=max(x,y)
|
||
|
typedef long long LL;
|
||
|
typedef pair<int, int> PII;
|
||
|
const double eps=1e-8;
|
||
|
const double PI=acos(-1.);
|
||
|
const LL MOD = 1000000007;
|
||
|
int sign(double x) {return x<-eps?-1:x>eps;}
|
||
|
struct spt {
|
||
|
double x,y,z;
|
||
|
spt(double _x=0,double _y=0,double _z=0) :x(_x),y(_y),z(_z) {}
|
||
|
spt operator + (spt s) {return spt(x+s.x,y+s.y,z+s.z);}
|
||
|
spt operator - (spt s) {return spt(x-s.x,y-s.y,z-s.z);}
|
||
|
spt operator * (double s) {return spt(x*s,y*s,z*s);}
|
||
|
spt operator / (double s) {return spt(x/s,y/s,z/s);}
|
||
|
double len() const {return sqrt(SQ(x)+SQ(y)+SQ(z));}
|
||
|
double operator * (spt s) {return x*s.x+y*s.y+z*s.z;}
|
||
|
spt operator ^ (spt s) {
|
||
|
spt ret;
|
||
|
ret.x=y*s.z-z*s.y;
|
||
|
ret.y=z*s.x-x*s.z;
|
||
|
ret.z=x*s.y-y*s.x;
|
||
|
return ret;
|
||
|
}
|
||
|
void output(char *s="") {printf("%s:%.6f %.6f %.6f\n",s,x,y,z);}
|
||
|
void input() {scanf("%lf%lf%lf",&x,&y,&z);}
|
||
|
} Orz(0,0,0);
|
||
|
spt S,T,V,A,B,C;
|
||
|
double disLP(spt p1,spt p2,spt q) {
|
||
|
return fabs((p2-p1)*(q-p1)/(p2-p1).len());
|
||
|
}
|
||
|
double disLL(spt p1,spt p2,spt q1,spt q2) {
|
||
|
spt p=q1-p1,u=p2-p1,v=q2-q1;
|
||
|
double d=(u*u)*(v*v)-SQ(u*v);
|
||
|
if(sign(d)==0)return disLP(q1,q2,p1);
|
||
|
double s=((p*u)*(v*v)-(p*v)*(u*v))/d;
|
||
|
return disLP(q1,q2,p1+u*s);
|
||
|
}
|
||
|
int isFL(spt p,spt o,spt q1,spt q2,spt &is) {
|
||
|
double a=o*(q2-p),b=o*(q1-p);
|
||
|
double d=a-b;
|
||
|
if(sign(d)==0)return 0;
|
||
|
is=(q1*a-q2*b)/d;
|
||
|
return 1;
|
||
|
}
|
||
|
int isFF(spt p1,spt o1,spt p2,spt o2,spt &ip,spt &io) {
|
||
|
spt e=o1^o2;
|
||
|
spt v=o1^e;
|
||
|
double d=o2*v;
|
||
|
if(sign(d)==0)return 0;
|
||
|
ip=p1+v*(o2*(p2-p1))/d,io=e;
|
||
|
return 1;
|
||
|
}
|
||
|
int inner(spt O,spt A,spt B,spt C) {
|
||
|
double S=((B-A)^(C-A)).len();
|
||
|
double S1=((A-O)^(B-O)).len();
|
||
|
double S2=((A-O)^(C-O)).len();
|
||
|
double S3=((C-O)^(B-O)).len();
|
||
|
return sign(S-S1-S2-S3)==0;
|
||
|
}
|
||
|
int inner(double o,double a,double b) {
|
||
|
return sign(max(a,b)-o)>=0&&sign(min(a,b)-o)<=0;
|
||
|
}
|
||
|
int inner(spt O,spt A,spt B) {
|
||
|
return inner(O.x,A.x,B.x)&&inner(O.y,A.y,B.y)&&inner(O.z,A.z,B.z);
|
||
|
}
|
||
|
int main() {
|
||
|
int i,j,k,u,v,w,p,q,r,n,m;
|
||
|
while(~scanf("%d",&n)) {
|
||
|
S.input(),T.input();
|
||
|
V.input();
|
||
|
double ans=0;
|
||
|
spt U= (S-T) ^V;
|
||
|
for(j=0; j<n; j++) {
|
||
|
A.input(),B.input(),C.input();
|
||
|
spt D= (B-A) ^ (C-A);
|
||
|
if(sign(D.len()) ==0) continue;
|
||
|
if(sign(U.len())==0) {
|
||
|
spt is;
|
||
|
int f=isFL(A,D,S,S+V,is);
|
||
|
if(f) {
|
||
|
ans+=inner(is,A,B,C);
|
||
|
continue;
|
||
|
}
|
||
|
if(sign((S-A)*D))continue;
|
||
|
spt iAB,iBC,iAC;
|
||
|
int fAB=isFL(A,D^(A-B),S,S+V,iAB);
|
||
|
int fBC=isFL(B,D^(B-C),S,S+V,iBC);
|
||
|
int fAC=isFL(C,D^(C-A),S,S+V,iAC);
|
||
|
fAB&=inner(iAB,A,B);
|
||
|
fBC&=inner(iBC,B,C);
|
||
|
fAC&=inner(iAC,A,C);
|
||
|
ans+=fAB|fBC|fAC;
|
||
|
continue;
|
||
|
}
|
||
|
if(sign(V*D)==0) {
|
||
|
if(sign((S-A)*D)==0&&sign((T-A)*D)==0) {
|
||
|
//TODO V//ABC && STABC on flat
|
||
|
spt iA,iB,iC;
|
||
|
int fA=isFL(S,(T-S)^D,A,A+V,iA);
|
||
|
int fB=isFL(S,(T-S)^D,B,B+V,iB);
|
||
|
int fC=isFL(S,(T-S)^D,C,C+V,iC);
|
||
|
double len=(T-S).len();
|
||
|
double le=0,re=len;
|
||
|
vector<double>L;
|
||
|
if(fA)L.PB((iA-S)*(T-S)/len);
|
||
|
if(fB)L.PB((iB-S)*(T-S)/len);
|
||
|
if(fC)L.PB((iC-S)*(T-S)/len);
|
||
|
sort(L.OP,L.ED);
|
||
|
if(L.SZ<2)continue;
|
||
|
double pe=L[0],qe=L[L.SZ-1];
|
||
|
cmax(pe,le);
|
||
|
cmin(qe,re);
|
||
|
if(qe>pe)ans+=(qe-pe)/len;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
spt SP,TP,iAB,iBC,iAC;
|
||
|
assert(isFL(A,D,S,S+V,SP));
|
||
|
assert(isFL(A,D,T,T+V,TP));
|
||
|
if(inner(SP,A,B,C)&&inner(TP,A,B,C)) {ans+=1; continue;}
|
||
|
vector<spt>L;
|
||
|
L.PB(SP),L.PB(TP);
|
||
|
int fAB=isFL(A,D^(A-B),SP,TP,iAB);
|
||
|
int fBC=isFL(B,D^(B-C),SP,TP,iBC);
|
||
|
int fAC=isFL(C,D^(C-A),SP,TP,iAC);
|
||
|
double len=(SP-TP).len();
|
||
|
if(fAB&&inner(iAB,SP,TP))for(i=0; i+1<L.SZ; i++)
|
||
|
if(inner(iAB,L[i],L[i+1])) {L.insert(L.OP+i+1,iAB); break;}
|
||
|
if(fBC&&inner(iBC,SP,TP))for(i=0; i+1<L.SZ; i++)
|
||
|
if(inner(iBC,L[i],L[i+1])) {L.insert(L.OP+i+1,iBC); break;}
|
||
|
if(fAC&&inner(iAC,SP,TP))for(i=0; i+1<L.SZ; i++)
|
||
|
if(inner(iAC,L[i],L[i+1])) {L.insert(L.OP+i+1,iAC); break;}
|
||
|
for(i=0; i+1<L.SZ; i++) {
|
||
|
spt mid=(L[i]+L[i+1])/2;
|
||
|
if(inner(mid,A,B,C))
|
||
|
ans+=(L[i+1]-L[i]).len()/len;
|
||
|
}
|
||
|
}
|
||
|
printf("%.8f\n",ans);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|