mirror of
https://github.com/Kiritow/OJ-Problems-Source.git
synced 2024-03-22 13:11:29 +08:00
86 lines
2.6 KiB
C++
86 lines
2.6 KiB
C++
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <iostream>
|
||
|
#include <algorithm>
|
||
|
#include <vector>
|
||
|
#include <queue>
|
||
|
#include <set>
|
||
|
#include <map>
|
||
|
#include <string>
|
||
|
#include <math.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <time.h>
|
||
|
using namespace std;
|
||
|
long long gcd(long long a,long long b)
|
||
|
{
|
||
|
if(b == 0)return a;
|
||
|
return gcd(b,a%b);
|
||
|
}
|
||
|
int main()
|
||
|
{
|
||
|
long long a,b,c,d,p,m;
|
||
|
int T;
|
||
|
int iCase = 0;
|
||
|
scanf("%d",&T);
|
||
|
while(T--)
|
||
|
{
|
||
|
iCase++;
|
||
|
scanf("%I64d%I64d%I64d%I64d%I64d%I64d",&a,&b,&c,&d,&p,&m);
|
||
|
long long ans = 0;
|
||
|
if(b+c <= a+d)
|
||
|
{
|
||
|
long long t1 = (a+c)%p;
|
||
|
long long add = (m - t1 + p)%p;
|
||
|
long long cnt1 = (a+c + add-m)/p;
|
||
|
long long t2 = (b+c-1)%p;
|
||
|
long long sub = (t2 - m + p)%p;
|
||
|
long long cnt2 = (b+c-1-sub-m)/p;
|
||
|
ans += (cnt2 - cnt1 + 1)*(1+add) + (cnt2 - cnt1 + 1)*(cnt2 - cnt1)/2 * p;
|
||
|
t1 = (b+c)%p;
|
||
|
add = (m - t1 + p)%p;
|
||
|
cnt1 = (b+c+add-m)/p;
|
||
|
t2 = (a+d)%p;
|
||
|
sub = (t2 - m + p)%p;
|
||
|
cnt2 = (a+d-sub-m)/p;
|
||
|
ans += (cnt2 - cnt1 + 1)*(b-a+1);
|
||
|
t1 = (a+d+1)%p;
|
||
|
add = (m - t1 + p)%p;
|
||
|
cnt1 = (a+d+1+add-m)/p;
|
||
|
t2 = (b+d)%p;
|
||
|
sub = (t2 - m + p)%p;
|
||
|
cnt2 = (b+d-sub-m)/p;
|
||
|
ans += (cnt2 - cnt1 + 1)*(1+sub) + (cnt2 - cnt1 + 1)*(cnt2 - cnt1)/2*p;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
long long t1 = (a+c)%p;
|
||
|
long long add = (m - t1 + p)%p;
|
||
|
long long cnt1 = (a+c + add-m)/p;
|
||
|
long long t2 = (a+d-1)%p;
|
||
|
long long sub = (t2 - m + p)%p;
|
||
|
long long cnt2 = (a+d-1-sub-m)/p;
|
||
|
ans += (cnt2 - cnt1 + 1)*(1+add) + (cnt2 - cnt1 + 1)*(cnt2 - cnt1)/2 * p;
|
||
|
t1 = (a+d)%p;
|
||
|
add = (m - t1 + p)%p;
|
||
|
cnt1 = (a+d+add-m)/p;
|
||
|
t2 = (b+ c)%p;
|
||
|
sub = (t2 - m + p)%p;
|
||
|
cnt2 = (b+c-sub-m)/p;
|
||
|
ans += (cnt2 - cnt1 + 1)*(d-c+1);
|
||
|
t1 = (b+c+1)%p;
|
||
|
add = (m - t1 + p)%p;
|
||
|
cnt1 = (b+c+1+add-m)/p;
|
||
|
t2 = (b+d)%p;
|
||
|
sub = (t2 - m + p)%p;
|
||
|
cnt2 = (b+d - sub-m)/p;
|
||
|
ans += (cnt2 - cnt1 + 1)*(1+sub) + (cnt2 - cnt1 + 1)*(cnt2 - cnt1)/2*p;
|
||
|
}
|
||
|
long long tot = (b-a+1)*(d-c+1);
|
||
|
long long GCD = gcd(ans,tot);
|
||
|
ans /= GCD;
|
||
|
tot /= GCD;
|
||
|
printf("Case #%d: %I64d/%I64d\n",iCase,ans,tot);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|