--[[ LUA MODULE bit.numberlua - Bitwise operations implemented in pure Lua as numbers, with Lua 5.2 'bit32' and (LuaJIT) LuaBitOp 'bit' compatibility interfaces. SYNOPSIS local bit = require 'bit.numberlua' print(bit.band(0xff00ff00, 0x00ff00ff)) --> 0xffffffff -- Interface providing strong Lua 5.2 'bit32' compatibility local bit32 = require 'bit.numberlua'.bit32 assert(bit32.band(-1) == 0xffffffff) -- Interface providing strong (LuaJIT) LuaBitOp 'bit' compatibility local bit = require 'bit.numberlua'.bit assert(bit.tobit(0xffffffff) == -1) DESCRIPTION This library implements bitwise operations entirely in Lua. This module is typically intended if for some reasons you don't want to or cannot install a popular C based bit library like BitOp 'bit' [1] (which comes pre-installed with LuaJIT) or 'bit32' (which comes pre-installed with Lua 5.2) but want a similar interface. This modules represents bit arrays as non-negative Lua numbers. [1] It can represent 32-bit bit arrays when Lua is compiled with lua_Number as double-precision IEEE 754 floating point. The module is nearly the most efficient it can be but may be a few times slower than the C based bit libraries and is orders or magnitude slower than LuaJIT bit operations, which compile to native code. Therefore, this library is inferior in performane to the other modules. The `xor` function in this module is based partly on Roberto Ierusalimschy's post in http://lua-users.org/lists/lua-l/2002-09/msg00134.html . The included BIT.bit32 and BIT.bit sublibraries aims to provide 100% compatibility with the Lua 5.2 "bit32" and (LuaJIT) LuaBitOp "bit" library. This compatbility is at the cost of some efficiency since inputted numbers are normalized and more general forms (e.g. multi-argument bitwise operators) are supported. STATUS WARNING: Not all corner cases have been tested and documented. Some attempt was made to make these similar to the Lua 5.2 [2] and LuaJit BitOp [3] libraries, but this is not fully tested and there are currently some differences. Addressing these differences may be improved in the future but it is not yet fully determined how to resolve these differences. The BIT.bit32 library passes the Lua 5.2 test suite (bitwise.lua) http://www.lua.org/tests/5.2/ . The BIT.bit library passes the LuaBitOp test suite (bittest.lua). However, these have not been tested on platforms with Lua compiled with 32-bit integer numbers. API BIT.tobit(x) --> z Similar to function in BitOp. BIT.tohex(x, n) Similar to function in BitOp. BIT.band(x, y) --> z Similar to function in Lua 5.2 and BitOp but requires two arguments. BIT.bor(x, y) --> z Similar to function in Lua 5.2 and BitOp but requires two arguments. BIT.bxor(x, y) --> z Similar to function in Lua 5.2 and BitOp but requires two arguments. BIT.bnot(x) --> z Similar to function in Lua 5.2 and BitOp. BIT.lshift(x, disp) --> z Similar to function in Lua 5.2 (warning: BitOp uses unsigned lower 5 bits of shift), BIT.rshift(x, disp) --> z Similar to function in Lua 5.2 (warning: BitOp uses unsigned lower 5 bits of shift), BIT.extract(x, field [, width]) --> z Similar to function in Lua 5.2. BIT.replace(x, v, field, width) --> z Similar to function in Lua 5.2. BIT.bswap(x) --> z Similar to function in Lua 5.2. BIT.rrotate(x, disp) --> z BIT.ror(x, disp) --> z Similar to function in Lua 5.2 and BitOp. BIT.lrotate(x, disp) --> z BIT.rol(x, disp) --> z Similar to function in Lua 5.2 and BitOp. BIT.arshift Similar to function in Lua 5.2 and BitOp. BIT.btest Similar to function in Lua 5.2 with requires two arguments. BIT.bit32 This table contains functions that aim to provide 100% compatibility with the Lua 5.2 "bit32" library. bit32.arshift (x, disp) --> z bit32.band (...) --> z bit32.bnot (x) --> z bit32.bor (...) --> z bit32.btest (...) --> true | false bit32.bxor (...) --> z bit32.extract (x, field [, width]) --> z bit32.replace (x, v, field [, width]) --> z bit32.lrotate (x, disp) --> z bit32.lshift (x, disp) --> z bit32.rrotate (x, disp) --> z bit32.rshift (x, disp) --> z BIT.bit This table contains functions that aim to provide 100% compatibility with the LuaBitOp "bit" library (from LuaJIT). bit.tobit(x) --> y bit.tohex(x [,n]) --> y bit.bnot(x) --> y bit.bor(x1 [,x2...]) --> y bit.band(x1 [,x2...]) --> y bit.bxor(x1 [,x2...]) --> y bit.lshift(x, n) --> y bit.rshift(x, n) --> y bit.arshift(x, n) --> y bit.rol(x, n) --> y bit.ror(x, n) --> y bit.bswap(x) --> y DEPENDENCIES None (other than Lua 5.1 or 5.2). DOWNLOAD/INSTALLATION If using LuaRocks: luarocks install lua-bit-numberlua Otherwise, download . Alternately, if using git: git clone git://github.com/davidm/lua-bit-numberlua.git cd lua-bit-numberlua Optionally unpack: ./util.mk or unpack and install in LuaRocks: ./util.mk install REFERENCES [1] http://lua-users.org/wiki/FloatingPoint [2] http://www.lua.org/manual/5.2/ [3] http://bitop.luajit.org/ LICENSE (c) 2008-2011 David Manura. Licensed under the same terms as Lua (MIT). Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. (end license) --]] local M = {_TYPE='module', _NAME='bit.numberlua', _VERSION='0.3.1.20120131'} local floor = math.floor local MOD = 2^32 local MODM = MOD-1 local function memoize(f) local mt = {} local t = setmetatable({}, mt) function mt:__index(k) local v = f(k); t[k] = v return v end return t end local function make_bitop_uncached(t, m) local function bitop(a, b) local res,p = 0,1 while a ~= 0 and b ~= 0 do local am, bm = a%m, b%m res = res + t[am][bm]*p a = (a - am) / m b = (b - bm) / m p = p*m end res = res + (a+b)*p return res end return bitop end local function make_bitop(t) local op1 = make_bitop_uncached(t,2^1) local op2 = memoize(function(a) return memoize(function(b) return op1(a, b) end) end) return make_bitop_uncached(op2, 2^(t.n or 1)) end -- ok? probably not if running on a 32-bit int Lua number type platform function M.tobit(x) return x % 2^32 end M.bxor = make_bitop {[0]={[0]=0,[1]=1},[1]={[0]=1,[1]=0}, n=4} local bxor = M.bxor function M.bnot(a) return MODM - a end local bnot = M.bnot function M.band(a,b) return ((a+b) - bxor(a,b))/2 end local band = M.band function M.bor(a,b) return MODM - band(MODM - a, MODM - b) end local bor = M.bor local lshift, rshift -- forward declare function M.rshift(a,disp) -- Lua5.2 insipred if disp < 0 then return lshift(a,-disp) end return floor(a % 2^32 / 2^disp) end rshift = M.rshift function M.lshift(a,disp) -- Lua5.2 inspired if disp < 0 then return rshift(a,-disp) end return (a * 2^disp) % 2^32 end lshift = M.lshift function M.tohex(x, n) -- BitOp style n = n or 8 local up if n <= 0 then if n == 0 then return '' end up = true n = - n end x = band(x, 16^n-1) return ('%0'..n..(up and 'X' or 'x')):format(x) end local tohex = M.tohex function M.extract(n, field, width) -- Lua5.2 inspired width = width or 1 return band(rshift(n, field), 2^width-1) end local extract = M.extract function M.replace(n, v, field, width) -- Lua5.2 inspired width = width or 1 local mask1 = 2^width-1 v = band(v, mask1) -- required by spec? local mask = bnot(lshift(mask1, field)) return band(n, mask) + lshift(v, field) end local replace = M.replace function M.bswap(x) -- BitOp style local a = band(x, 0xff); x = rshift(x, 8) local b = band(x, 0xff); x = rshift(x, 8) local c = band(x, 0xff); x = rshift(x, 8) local d = band(x, 0xff) return lshift(lshift(lshift(a, 8) + b, 8) + c, 8) + d end local bswap = M.bswap function M.rrotate(x, disp) -- Lua5.2 inspired disp = disp % 32 local low = band(x, 2^disp-1) return rshift(x, disp) + lshift(low, 32-disp) end local rrotate = M.rrotate function M.lrotate(x, disp) -- Lua5.2 inspired return rrotate(x, -disp) end local lrotate = M.lrotate M.rol = M.lrotate -- LuaOp inspired M.ror = M.rrotate -- LuaOp insipred function M.arshift(x, disp) -- Lua5.2 inspired local z = rshift(x, disp) if x >= 0x80000000 then z = z + lshift(2^disp-1, 32-disp) end return z end local arshift = M.arshift function M.btest(x, y) -- Lua5.2 inspired return band(x, y) ~= 0 end -- -- Start Lua 5.2 "bit32" compat section. -- M.bit32 = {} -- Lua 5.2 'bit32' compatibility local function bit32_bnot(x) return (-1 - x) % MOD end M.bit32.bnot = bit32_bnot local function bit32_bxor(a, b, c, ...) local z if b then a = a % MOD b = b % MOD z = bxor(a, b) if c then z = bit32_bxor(z, c, ...) end return z elseif a then return a % MOD else return 0 end end M.bit32.bxor = bit32_bxor local function bit32_band(a, b, c, ...) local z if b then a = a % MOD b = b % MOD z = ((a+b) - bxor(a,b)) / 2 if c then z = bit32_band(z, c, ...) end return z elseif a then return a % MOD else return MODM end end M.bit32.band = bit32_band local function bit32_bor(a, b, c, ...) local z if b then a = a % MOD b = b % MOD z = MODM - band(MODM - a, MODM - b) if c then z = bit32_bor(z, c, ...) end return z elseif a then return a % MOD else return 0 end end M.bit32.bor = bit32_bor function M.bit32.btest(...) return bit32_band(...) ~= 0 end function M.bit32.lrotate(x, disp) return lrotate(x % MOD, disp) end function M.bit32.rrotate(x, disp) return rrotate(x % MOD, disp) end function M.bit32.lshift(x,disp) if disp > 31 or disp < -31 then return 0 end return lshift(x % MOD, disp) end function M.bit32.rshift(x,disp) if disp > 31 or disp < -31 then return 0 end return rshift(x % MOD, disp) end function M.bit32.arshift(x,disp) x = x % MOD if disp >= 0 then if disp > 31 then return (x >= 0x80000000) and MODM or 0 else local z = rshift(x, disp) if x >= 0x80000000 then z = z + lshift(2^disp-1, 32-disp) end return z end else return lshift(x, -disp) end end function M.bit32.extract(x, field, ...) local width = ... or 1 if field < 0 or field > 31 or width < 0 or field+width > 32 then error 'out of range' end x = x % MOD return extract(x, field, ...) end function M.bit32.replace(x, v, field, ...) local width = ... or 1 if field < 0 or field > 31 or width < 0 or field+width > 32 then error 'out of range' end x = x % MOD v = v % MOD return replace(x, v, field, ...) end -- -- Start LuaBitOp "bit" compat section. -- M.bit = {} -- LuaBitOp "bit" compatibility function M.bit.tobit(x) x = x % MOD if x >= 0x80000000 then x = x - MOD end return x end local bit_tobit = M.bit.tobit function M.bit.tohex(x, ...) return tohex(x % MOD, ...) end function M.bit.bnot(x) return bit_tobit(bnot(x % MOD)) end local function bit_bor(a, b, c, ...) if c then return bit_bor(bit_bor(a, b), c, ...) elseif b then return bit_tobit(bor(a % MOD, b % MOD)) else return bit_tobit(a) end end M.bit.bor = bit_bor local function bit_band(a, b, c, ...) if c then return bit_band(bit_band(a, b), c, ...) elseif b then return bit_tobit(band(a % MOD, b % MOD)) else return bit_tobit(a) end end M.bit.band = bit_band local function bit_bxor(a, b, c, ...) if c then return bit_bxor(bit_bxor(a, b), c, ...) elseif b then return bit_tobit(bxor(a % MOD, b % MOD)) else return bit_tobit(a) end end M.bit.bxor = bit_bxor function M.bit.lshift(x, n) return bit_tobit(lshift(x % MOD, n % 32)) end function M.bit.rshift(x, n) return bit_tobit(rshift(x % MOD, n % 32)) end function M.bit.arshift(x, n) return bit_tobit(arshift(x % MOD, n % 32)) end function M.bit.rol(x, n) return bit_tobit(lrotate(x % MOD, n % 32)) end function M.bit.ror(x, n) return bit_tobit(rrotate(x % MOD, n % 32)) end function M.bit.bswap(x) return bit_tobit(bswap(x % MOD)) end return M